Cho 5 điểm A,B,C,D,E trong đó A,C,E thẳng hàng B,D nằm khác phía đối với đường thẳng AC
a) Vẽ tia Bx cắt CE tại A
b) Vẽ tia Dy song song Bx cắt CE tại M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AE/AB=AK/AC
nên EK//BC
b: Xét tứ giác ABMC có
AB//MC
AC//MB
góc BAC=90 độ
=>ABMC là hình chữ nhật
c: Xét ΔCAB co
K là trung điểm của CA
KO//AB
=>O là trung điểm của BC
ABMC là hình chữ nhật
=>AM cắt BC tại trung điểm của mỗi đường
=>A,O,M thẳng hàng
a/
Ta có: AD //CE => AEC= BAD ( đồng vị) (1)
DAC= ACE ( sole trong) (2)
và AD là tia phân giác của góc BAC => BAD=DAC (3)
Từ (1), (2),(3) => ACE=AEC
b/
Ta có:
ABC + EAC=180 ( kề bù)
và AD là tia phân giác của ABC => DAC= \(\frac{ABC}{2}\)
AF là tia phân giác của EAC => FAC= \(\frac{EAC}{2}\)
Ta có: DAF= DAC+EAC
= \(\frac{ABC}{2}+\frac{EAC}{2}\)
= \(\frac{180}{2}\)
= 90
và AD // CE => DAF=AFE=90 ( sole trong)
=> AF vuông góc với CE
Sửa đề: Đường thẳng qua O và song song với AB cắt AM tại D và cắt AC tại F
Ta có: ΔABC vuông tại A
mà AO là đường trung tuyến
nên OA=OB=OC
Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
OA=OB
Do đó: ΔOAM=ΔOBM
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại E và E là trung điểm của AB
Ta có: OD//AB
AB\(\perp\)AC
Do đó: DO\(\perp\)AC tại F
Xét tứ giác AEOF có
\(\widehat{AEO}=\widehat{AFO}=\widehat{FAE}=90^0\)
=>AEOF là hình chữ nhật
=>AO=EF