giúp tôi giải bài này, xin cám ơn!
chứng tỏ A=32014+32015+32016+32017
chứng minh A chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
Kẻ CM // OA, với M thuộc OB
Ta có góc OCM = góc AOC (so le trong) ; góc AOC = góc COM = 600 ( OC là phân giác) => góc OCM = góc COM = 600
Vậy tam giác OCM đều => OC = CM = MO
Ta lại có MC/OA = MB/OB => MC/OA = (OB - OM)/OB => MC/OA = 1 - OM/OB => MC/OA + OM/OB =1
=> OC/OA + OC/OB = 1 hay 1/OA + 1/OB = 1/OC (đpcm)
Nhận xét: với mọi n nguyên thì \(n^2\equiv\left\{0;1;2;4\right\}\left(mod7\right)\)
Giả sử a;b tồn tại 1 số không chia hết cho 7
\(\Rightarrow a^2+b^2\equiv\left\{1;2;3;4;5;6;8\right\}\left(mod7\right)\)
\(\Rightarrow a^2+b^2\) luôn ko chia hết cho 7 (trái với giả thiết)
Vậy điều giả sử là sai hay \(a;b\) đều chia hết cho 7
a;
A = 120a + 36b
A = 12 x 10 x a + 12 x 3 x b
A = 12 x (10a + 3b) ⋮ 12 (đpcm)
b;
B = 57 - 56 + 55
B = 55.(52 - 5 + 1)
B = 55.(25 - 5 + 1)
B = 55.(20 + 1)
B = 55.21 ⋮ 21 (đpcm)
de sai bet...vi 2.6=12ro ra la tich 2stn chan ma 12 khong chia het cho 8.de dung phai la:cmr tich 2 so chan lien tiep chia het cho 8........giai:trong 2 so chan lien tiep co 1so chia het cho 2 so kia chia het cho4nen tich 2 so do chia het cho8
Ta xét :
\(3^{2014}+3^{2015}+3^{2016}+3^{2017}\)
\(=3^{2014}\left(1+3+3^2+3^3\right)\)
\(=3^{2014}.40\)
\(=3^{2013}.3.40\)
\(=3^{2013}.120\)
Mà \(120⋮120\)
\(\Rightarrow3^{2013}.120⋮120\)
\(\Rightarrow A⋮120\)
\(\RightarrowĐPCM\)
ta có A=3^2014+3^2015+3^2016+3^2017
A=3^2013(3+3^2+3^3+3^4)
A=3^2013 x 120 chia hết cho 120 (ĐCPCM)