Cho phương trình \(x^2-4x+1=0\) có một nghiệm là \(x_1\). Tính giá trị biểu thức \(A=\sqrt{2x_1^4+8x_1+9}-5x_1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=\frac{5}{2}\\x_1x_2=\frac{c}{a}=-\frac{3}{2}\end{cases}}\)
Khi đó : A = ( x1 + 2x2 )( x2 + 2x1 ) = x1x2 + 2x12 + 2x22 + 4x1x2
= 5x1x2 + 2( x1 + x2 )2 - 4x1x2
= 2( x1 + x2 )2 + x1x2 = 2.(5/2)2 - 3/2 = 11
\(x^2-4x+3=0\)
Theo vi-et, ta có: \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Đặt \(A=\sqrt{x_1}+\sqrt{x_2}\)
=>\(A^2=x_1+x_2+2\sqrt{x_1x_2}\)
=>\(A^2=4+2\cdot\sqrt{3}\)
=>\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Ptr có:`\Delta=(-3)^2-4.2.(-3)=33 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=3/2),(x_1.x_2=c/a=[-3]/2):}`
Ta có:`B=x_1 ^2 x_2+x_2 ^2 x_1`
`<=>B=x_1.x_2(x_1+x_2)`
`<=>B=[-3]/2 . 3/2=[-9]/4`
\(2x^2-3x-3=0\)
\(B=x_1^2x_2+x_2^2x_1=x_1x_2\left(x_1+x_2\right)\)
Theo hệ thức Vi -ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=\dfrac{-3}{2}\end{matrix}\right.\)
= \(\dfrac{-3}{2}.\dfrac{3}{2}=\dfrac{-9}{4}\)
Vậy \(B=x_1^2x_2+x_2^2x_1=\dfrac{-9}{4}\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-5\end{matrix}\right.\)
\(D=5-\dfrac{x_2}{x_1}-\dfrac{x_1}{x_2}+3=8-\dfrac{x_1^2+x_2^2}{x_1x_2}=8-\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=8-\dfrac{\left(-4\right)^2-10}{5}=...\)
\(x^2-4x-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)
=>Phương trình này có hai nghiệm phân biệt
Theo vi-et, ta có:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4^2-2\cdot\left(-6\right)=16+12=28\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)
\(C=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)
\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)
\(D=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)