. Chứng minh rằng .
chứng minh là j
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\widehat {t'AM} = \widehat {ABN}( = 65^\circ )\), mà 2 góc này ở vị trí đồng vị nên xx’//yy’ ( Dấu hiệu nhận biết 2 đường thẳng song song.)
b) Vì xx’//yy’ nên \(\widehat {x'MN} = \widehat {MNB}\)( 2 góc so le trong), mà \(\widehat {x'MN} = 70^\circ \Rightarrow \widehat {MNB} = 70^\circ \)
3.42:
AD//Bx
=>\(\widehat{BAD}=\widehat{xBA}\)
mà \(\widehat{xBA}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)
nên \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}=\widehat{ACB}\)
Xét ΔBAD và ΔBCA có
\(\widehat{BAD}=\widehat{BCA}\)
\(\widehat{ABD}\) chung
Do đó: ΔBAD đồng dạng với ΔBCA
=>\(\dfrac{BA}{BC}=\dfrac{BD}{BA}\)
=>\(BA^2=BC\cdot BD\)
b: Gọi M là tâm đường tròn ngoại tiếp ΔACD
Xét (M) có
\(\widehat{BAD}=\widehat{ACD}\)
\(\widehat{ACD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)
Do đó: \(\widehat{BAD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AD}\)
mà AB không phải là dây của (M) và AD là dây của (M)
nên AB là tiếp tuyến của (M)
A=20/1.21+20/2.22+...+20/80.100
=1-1/21+1/2-1/22+...+1/80-1/100
=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)
80B=80/1.81+80/2.82+...+8/20.100
=1-1/81+1/2-1/82+...+1/20-1/100
=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)
=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)
=>20A=80B
=>A=4B
a) -3/7 + 5/13 + -4/7
= ( -3/7 + -4/7 ) + 5/13
= -7/7 +5/13
= -1 + 5/13
= -13/13 + 5/13
= -8/13
b) -5/21 + -2/21 + 8/24
= -7/21 + 8/24
= -1/3 + 1/3
= 0
a) \(\frac{-3}{7}+\frac{5}{13}+\frac{-4}{7}\)
\(=\left(\frac{-3}{7}+\frac{-4}{7}\right)+\frac{5}{13}\)
\(=\left(-1\right)+\frac{5}{13}\)
\(=-1\frac{5}{13}\)
b) \(\frac{-5}{21}+\frac{-2}{21}+\frac{8}{24}\)
\(=\left(\frac{-5}{21}+\frac{-2}{21}\right)+\frac{1}{3}\)
\(=\frac{-1}{3}+\frac{1}{3}\)
\(=0\)
a) =-12,05
b) =-12,05
c) =79,62
dùng mt là nhanh nhất
Ai tích mk mk sẽ tích lại
$A=1.21+3.41+...+49.501$ hiển nhiên $>1$ rồi mà bạn. Bạn xem lại đề.
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{49.50}\)
A < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{49.50}\) +\(\dfrac{1}{2.3}+\dfrac{1}{4.5}+\dfrac{1}{6.7}\)+...+\(\dfrac{1}{48.49}\)
A < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\) +\(\dfrac{1}{6.7}\)+.. +\(\dfrac{1}{47.48}\)+ \(\dfrac{1}{48.49}\)+ \(\dfrac{1}{49.50}\)
A < \(\dfrac{1}{1}\)-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A < \(\dfrac{1}{1}\) - \(\dfrac{1}{50}\) < 1 (đpcm)