3 mũ 2 phần 1x3 +3 mũ 2 phần 3x5 +3 mũ 2 phần 5x7+...+3 mũ 2 phần 2021x2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+\dfrac{3^2}{26.29}+...+\dfrac{3^2}{77.80}\)
\(=3\left(\dfrac{3}{20.23}+\dfrac{3}{23.26}+\dfrac{3}{26.29}+...+\dfrac{3}{77.80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{4}{80}-\dfrac{1}{80}\right)=3.\dfrac{3}{80}=\dfrac{9}{80}\)
\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Gọi biểu thức trên là A, ta có:
3A = 1-2/3+3/3^2-...-100/3^99
3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]
4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]
Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99
3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012
3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]
4B = 3 - 1/3^99
=> 4B < 3 => B < 1/4 [2]
Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]
MỎI TAY QUỚ
tk nha
Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)
A = \(\dfrac{3^2}{1.3}\) + \(\dfrac{3^2}{3.5}\) + \(\dfrac{3^2}{5.7}\)+ ... + \(\dfrac{3^2}{2021.2023}\)
A = \(\dfrac{3^2.2}{2}\).(\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + ... + \(\dfrac{1}{2021.2023}\))
A = \(\dfrac{9}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + ... + \(\dfrac{2}{2021.2023}\))
A = \(\dfrac{9}{2}\).(\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}\) +...+\(\dfrac{1}{2021}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{9}{2}\).(\(\dfrac{1}{1}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{9}{2}\).\(\dfrac{2022}{2023}\)
A = \(\dfrac{9099}{2023}\)