tính giá trị
A= \(\sqrt{21+8\sqrt{ }5}\)+\(\sqrt{21-8\sqrt{ }5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=\left(-\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=-1\)
b.\(\sqrt{16+2\sqrt{16.5}+5}+\sqrt{16-2\sqrt{16.5}+5}=\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(4-\sqrt{5}\right)^2}=8\)
d,dat \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow A^2=4+\sqrt{7}+2\sqrt{16-7}+4-\sqrt{7}\)\(A^2=8+6=14\Rightarrow A=\sqrt{14}\)
C,\(\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}=\sqrt{17-4\left(2+\sqrt{5}\right)}=\sqrt{17-8-4\sqrt{5}}=\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
i) \(\sqrt{8-3\sqrt{7}}+\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{16-6\sqrt{7}}{2}}+\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(3-\sqrt{7}\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|3-\sqrt{7}\right|}{\sqrt{2}}+\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{3-\sqrt{7}}{\sqrt{2}}+\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
j) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}=\sqrt{\dfrac{10+2\sqrt{21}}{2}}-\sqrt{\dfrac{10-2\sqrt{21}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-\sqrt{3}\right)^2}{2}}=\dfrac{\left|\sqrt{7}+\sqrt{3}\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-\sqrt{3}\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{7}-\sqrt{3}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
Ta có: \(\dfrac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)
\(=1+\sqrt{3}+\sqrt{5}\)
a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)
\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)
b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)
a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)
\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)
=16-5=11
\(\sqrt{21-8\sqrt{5}}\)\(-\sqrt{21-4\sqrt{5}}\)
\(=\sqrt{16-2.4\sqrt{5}+5}\)\(-\sqrt{20-2\sqrt{20}+1}\)
\(=\sqrt{\left(4-\sqrt{5}\right)^2}\)\(-\sqrt{\left(\sqrt{20}-1\right)}\)
\(=4-\sqrt{5}-\left(\sqrt{20}-1\right)\)
\(=4-\sqrt{5}-\sqrt{20}+1\)
\(=5-\sqrt{5}-2\sqrt{5}\)
\(=5-3\sqrt{5}\)
\(a,\sqrt{29+12\sqrt{5}}+2\sqrt{21-8\sqrt{5}}\)
\(\sqrt{29+6\sqrt{20}}+\sqrt{84-32\sqrt{5}}\)
\(\sqrt{\sqrt{20}^2+6\sqrt{20}+3^2}+\sqrt{84-16\sqrt{20}}\)
\(\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{8^2-16\sqrt{20}+\sqrt{20}^2}\)
\(\left|\sqrt{20}+3\right|+\sqrt{\left(8-\sqrt{20}\right)^2}\)
\(\sqrt{20}+3+\left|8-\sqrt{20}\right|\)
\(\sqrt{20}+3+8-\sqrt{20}\)
\(=11\)
\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
a: \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
b: \(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{5}+2-4+\sqrt{5}\)
\(=2+\sqrt{3}-2=\sqrt{3}\)
tui làm 1 cái thui nha
\(\sqrt{21+8\sqrt{5}}\)
=\(\sqrt{16+2\cdot4\cdot\sqrt{5}+5}\)
=\(\sqrt{\left(4+\sqrt{5}\right)^2}\)
=\(4+\sqrt{5}\)
cái kia \(4-\sqrt{5}\)
\(A=\sqrt{21+8\sqrt{5}}+\sqrt{21-8\sqrt{5}}\)
\(=8\)