K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

cả hai bài đều giải bằng cách  bình phương cả hai vế rồi so sánh

27 tháng 9 2017

So sánh từng vế:

\(\sqrt{15}+1=4,872983346\)

\(\sqrt{24}=4,898979486\)

Vậy: \(\sqrt{15}+1< \sqrt{24}\)

\(\sqrt{2002}+\sqrt{2004}=89,50977321\)

\(2\sqrt{2005}=89,5545271\)

Vậy \(\sqrt{2002}+\sqrt{2004}< 2\sqrt{2005}\)

P/s: Ko chắc

NV
4 tháng 8 2021

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)

\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)

17 tháng 6 2017

lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn

17 tháng 6 2017

\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)

\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)

4 tháng 10 2016

k đi mình làm cho

3 tháng 7 2017

Áp dụng BĐT CAuchy-Schwarz ta có:

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2005}\right)^2\)

\(\le\left(1+1\right)\left(2003+2005\right)\)

\(=2\cdot4008=8016\)

\(\Rightarrow A^2\le8016\Rightarrow A\le2\sqrt{2004}=B\)

3 tháng 7 2017

MÌNH LỚP 7 NHƯNG TRẢ LỜI ĐƯỢC LÈ

25 tháng 9 2016

\(\sqrt{2003}\)+\(\sqrt{2005}\)<2\(\sqrt{2004}\)

26 tháng 9 2016

ta có :\(\left(\sqrt{2005}+\sqrt{2003}\right)^2\le\left(1^2+1^2\right)\left(2005+2003\right)=2.4008\)(bđt bu-nhia-cop xki)

\(\left(2\sqrt{2004}\right)^2=4.2004=2.4008\)

\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

24 tháng 5 2016

Giả sử : \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)

\(\Leftrightarrow2004+2006+2\sqrt{2004.2006}< 4.2005\)

\(\Leftrightarrow\sqrt{2004.2006}< 2005\Leftrightarrow2004.2006< 2005^2\)

\(\Leftrightarrow\left(2005-1\right)\left(2005+1\right)< 2005^2\)

\(\Leftrightarrow2005^2-1< 2005^2\) . BĐT đúng

Vậy \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)

27 tháng 5 2016

Giả sử : \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\) 

\(\Leftrightarrow2004+2006+2\sqrt{2004.2006}< 4.2005\)

\(\Leftrightarrow\sqrt{2004.2006}< 2005\Leftrightarrow2004.2006< 2005^2\)

\(\Leftrightarrow\left(2005-1\right)\left(2005+1\right)< 2005^2\)

\(\Leftrightarrow2005^2-1< 2005^2.\) BĐT đúng

Vậy \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)