bài 1
vẽ 2 đường thẳng CD , A thuộc CD ; M ko thuộc CD
vẽ 2 đoạn thẳng AB và MN cắt nhau tại điểm D
bài 2: cho 3 điểm P,Q,R ko thẳng hàng
a vẽ đoạn thẳng QR
b vẽ đường thẳng PR
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: M thuộc đoạn CD
=> CM+MD=CD
=> 2+MD=4
=> MD=2(cm)
=> CM=MD=2cm
=> M là trung điểm CD
Ta có: Đường thẳng a vuông góc với CD tại trung điểm M của CD
=> a là đường trung trực của CD
a: Xét ΔBHE vuông tại H và ΔBHD vuông tại H có
HB chung
HE=HD
DO đó: ΔBHE=ΔBHD
Suy ra: \(\widehat{EBH}=\widehat{DBH}\)
hay BF là phân giác của góc EBD
b: \(\widehat{FBA}+\widehat{F}=90^0\)
\(\widehat{FCH}+\widehat{F}=90^0\)
Do đó: \(\widehat{FBA}=\widehat{FCH}\)
a) Xét tam giác BHE vuông góc tại H và tam giác BHD vuông góc tại H:
HE = HD (H là trung điểm ED).
BD chung.
\(\Rightarrow\) Tam giác BHE = Tam giác BHD (cạnh huyền - góc nhọn).
\(\Rightarrow\) \(\widehat{EBH}=\widehat{DBH}\) (2 góc tương ứng).
\(\Rightarrow\) BH là phân giác \(\widehat{EBD}.\)
\(\Rightarrow\) BF là phân giác \(\widehat{EBD}.\)
b) Xét tam giác CAD: \(\widehat{CAD}+\widehat{CDA}+\widehat{ACD}=180^o\) (Tổng 3 góc trong tam giác).
Xét tam giác BHD: \(\widehat{BHD}+\widehat{BDH}+\widehat{HBD}=180^o\) (Tổng 3 góc trong tam giác).
Mà \(\widehat{CAD}=\widehat{BHD}\left(=90^o\right);\widehat{CDA}=\widehat{BDH}\) (đối đỉnh).
\(\Rightarrow\widehat{ACD}=\widehat{HBD}.\\ \Rightarrow\widehat{FCH}=\widehat{FBA}.\)