Cho hai số tự nhiên a,b với a#0; b#0. Biết a chia hết cho b,b chia hết cho a.Chứng minh a=b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=1\Leftrightarrow a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)⋮\left(a+b\right)\)
Giả sử \(n=k\Leftrightarrow\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right)\)
Với \(n=k+1\)
Cần cm: \(\left(a^{2k+3}+b^{2k+3}\right)⋮\left(a+b\right)\left(1\right)\)
\(\Leftrightarrow a^{2k+3}+b^{2k+3}=a^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^{2k+1}\cdot a^2+b^{2k+1}\cdot a^2-b^{2k+1}\cdot a^2+b^{2k+1}\cdot b^2\\ =a^2\left(a^{2k+1}+b^{2k+1}\right)-b^{2k+1}\left(a^2-b^2\right)\)
Do \(\left(a^{2k+1}+b^{2k+1}\right)⋮\left(a+b\right);\left(a^2-b^2\right)⋮\left(a-b\right)\)
Do đó \(\left(1\right)\) luôn đúng
Theo pp quy nạp suy ra đpcm
1) 12 = 1.12 = 2.6 = 3.4 = 4.3 = 6.2 = 12.1
2) 12 = 1.12 = 2.6 = 3.4
Vậy (a; b) ∈ {(1; 12); (2; 6); (3; 4)}
3) 30 = 1.30 = 2.15 = 3.10 = 5.6 = 6.5 = 10.3 = 15.2 = 30.1
4) 30 = 30.1 = 15.2 = 10.3 = 6.5
Vậy (a; b) ∈ {(30; ); (15; 2); (10; 3); (6; 5)}
a, Ta có: 12 = 1 x 12; 2 x 6; 3 x 4
b, Ta có: 12 = 1 x 12; 2 x 6; 3x 4
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3}
=> b ϵ {12; 6; 4}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 12); (2; 6); (3; 4)}
c, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
d, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a > b
=> a = 30; b = 1
=> a = 15; b = 2
=> a = 10; b = 3
=> a = 6; b = 5
Vậy ta có các cặp số (a; b) thỏa mãn đề bài là:
(a; b) ϵ {(30; 1); (15; 2); (10; 3); (6; 5}
Với \(n=1\Leftrightarrow b^n-a^n=b-a⋮b-a\)
G/s \(n=k\Leftrightarrow b^k-a^k⋮b-a\)
Với \(n=k+1\), cần cm \(b^{k+1}-a^{k+1}⋮b-a\)
Ta có \(b^{k+1}-a^{k+1}=b^k\cdot b-a^k\cdot a=b^k\cdot b-a^k\cdot b+a^k\cdot b-a^k\cdot a\)
\(=b\left(b^k-a^k\right)-a^k\left(b-a\right)\)
Vì \(b^k-a^k⋮b-a;b-a⋮b-a\) nên \(b^{k+1}-a^{k+1}⋮b-a\)
Suy ra đpcm
10:
n lẻ nên n=2k-1
=>A=1+3+5+7+...+2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là:
\(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\) là số chính phương(ĐPCM)
Vì 3 (a + b) = 5 (a - b) nên 3 (a + b) và 5 (a - b) là bội chung của 3 và 5.
=> Giá trị nhỏ nhất của 2 tích 3 (a + b) và 5 (a - b) sẽ là 15.
3 (a + b) = 15
=> a + b = 15 : 3
=> a + b = 5 (1)
5 (a - b) = 15
=> a - b = 15 : 5
=> a - b = 3 (2)
Từ (1) và (2) => a = 4 và b = 1
Ai biết thì giảng cho mình nhé
Nếu a > b thì b\(⋮̸\)a vì a, b\(\in\)N*. Nếu a < b thì a\(⋮̸\)b vì a, b\(\in\)N*. Vậy, a phải = b(đpcm)