K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

HB=15^2/25=9cm

HC=25-9=16cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=25/7

=>BD=75/7cm; CD=100/7cm

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

c: AI*AB=AK*AC

=>AI/AC=AK/AB

=>ΔAIK đồng dạng với ΔACB

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:
a. Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20$ (cm) 

Áp dụng tính chất đường phân giác:

$\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}$

Mà: $BD+DC=BC=20$ nên:

$BD=20:(3+4).3=\frac{60}{7}$ (cm) 

$CD= 20:(3+4).4=\frac{80}{7}$ (cm) 

b.

$AH=2S_{ABC}:BC=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6$ (cm) 

$BH=\sqrt{AB^2-AH^2}=\sqrt{12^2-9,6^2}=7,2$ (cm) 
$HD = BD-BH = \frac{60}{7}-7,2=\frac{48}{35}$ (cm) 

$AD = \sqrt{AH^2+HD^2}=\sqrt{9,6^2+(\frac{48}{35})^2}=\frac{48\sqrt{2}}{7}$ (cm)

AH
Akai Haruma
Giáo viên
13 tháng 1

Hình vẽ:

2 tháng 3 2019

A B C H D E 1 1 2 3 1 1

                                                                 CM

Trên BC lấy D sao cho BA=BD.Trên AC lấy E sao cho AE=AH.

Xét \(\Delta BAD\)có BA=BD ( cách vẽ )

\(\Rightarrow\Delta BAD\)cân tại A ( định lý )

\(\Rightarrow\widehat{BAD}=\widehat{D1}\)( Tính chất )      (1)

Ta có: \(\widehat{BAD}+\widehat{A3}=\widehat{BAC}\)( hình vẽ )

          \(\widehat{BAD}+\widehat{A3}=90^0\) (2)

Xét \(\Delta HAD\)có \(\widehat{H1}+\widehat{A2}+\widehat{D1}=180^0\)( Định lý )

                                              \(\widehat{A2}+\widehat{D1}=90^0\)(3)

Từ (1) , (2) , (3) \(\Rightarrow\widehat{A2}=\widehat{A3}\)

Xét \(\Delta AHD\)và \(\Delta AED\)có:

           \(\hept{\begin{cases}AH=AE\left(c.ve\right)\\\widehat{A2}=\widehat{A3}\left(cmt\right)\\ADchung\end{cases}\Rightarrow\Delta AHD=\Delta AED\left(c-g-c\right)}\)

 \(\Rightarrow\widehat{H1}=\widehat{E1}\)( 2 góc tương ứng ) mà \(\widehat{H1}=90^0\Rightarrow\widehat{E1}=90^0\).

 \(\Rightarrow EC\perp DC\)tại E 

Xét \(\Delta DEC\)vuông tại A ( cmt ) \(\Rightarrow DC>EC\)( quan hệ giữa góc và cạnh trong tam giác vuông )

                      \(\Rightarrow AE+DC>AE+EC\)

                      \(\Rightarrow AE+DC>AC\) 

                      \(\Rightarrow AE+BD+DC>AC+BD\) 

                       \(\Rightarrow AE+BC>BD+AC\)  

                       \(\Rightarrow AH+BC>AB+AC\)( đpcm )

 Mọi người có thể tham khảo.

Giúp với Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE a) Chứng minh tam giác ABD đồng dạng tam giác ACE b) Chứng minh tam giác ADE đồng dạng tam giác ABC c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2 Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC b) Chứng...
Đọc tiếp

Giúp với
Bài 1. Cho tam giác ABC nhọn (AB<AC) vẽ đường cao BD, CE
a) Chứng minh tam giác ABD đồng dạng tam giác ACE
b) Chứng minh tam giác ADE đồng dạng tam giác ABC
c) Tia DE cắt CD tại i. Chứng minh iB.iC=iE.iD
d) Gọi O là trung điểm BC. Chứng minh iD.iE=Oi^2 - OC^2
Bài 2. Cho tam giác ABC vuông tại A, kẻ đường cao AH
a) Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB^2=HB.HC
b) Chứng minh AH^2=HB.HC
c) kẻ HD vuông AC tại D. Đường trung tuyến CM của tam giác ABC cắt tại HD tại N. Chứng minh HN phần BM = CN phần CM và HN=DN
Bài 3. Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, AH là đường cao. Tính BC, AH
Bài 4. Cho tam giác ABC (AB<AC), tia phân giác của góc A cắt cạnh BC tại D. Từ B kẻ BE vuông AD (E thuộc AD) , từ C kẻ CF vuông AD (F thuộc AD). Chứng minh :
a) tam giác ABE đồng dạng tam giác ACF
b) AB.AF = AC.AE
c) BE phần CF = DE phần DF
Bài 5. Cho tam giác ABC vuông tại A, lấy điểm D bất kì thuộc cạnh BC. Từ D kẻ đường thẳng vuông góc với AB tại E, vuông góc AC tại F
a) Chứng minh tam giác BED đồng dạng tam giác BAC
b) Chứng minh DB phần DC = FA phần FC
c) Trên tia đối của tia ED lấy điểm K sao cho EK=ED. Gọi H là giao điểm của KC và EF. Chứng minh tam giác HKE đồng dạng tam giác HCF
d) chứng minh DH//BK

0