K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,
Kẻ AH vuông góc BC
Có: SABC = 1/2.AH.BC
      SABE = 1/2.AH.BE
                = 1/2.AH.2/3.BC
                = SABC.2/3
=> SABE = 2/3.SABC

b,
Vì chiều cao ED có D là trung điểm AB
=> SABE = 2.SBDE
               = 2.12 = 24 cm2
=> SABC = 3/2 . SABE = 3/2 . 24 = 36 cm2

28 tháng 7 2017

xin lỗi mọi người là tính tứ giác aced chứ ko phải acbed

             Giải:

a) Diện tích tam giác ABC = 1/2 x AH x BC

    Diện tích tam giác ABE = 1/2 x AH x BE

                                          = 1/2 x AH x 2/3 BC

                                          = 1/2 x AH x BC x 2/3

                                          = Diện tích tam giác ABC x 2/3

Vậy: Diện tích tam giác ABE = 2/3 diện tích tam giác ABC.

b) Vì chiều cao DE có D là trung điểm nên Diện tích tam giác ABE = 2 lần diện tích tam giác BDE

                                                                                                           = 12 x 2

                                                                                                           = 24

                                                                      Diện tích tam giác ABC = 24 : 2/3

                                                                                                            = 36

c) Diện tích hình tứ giác ADEC là:        36 - 24 = 12 ( cm vuông)

                   Đáp số:  ...........................

14 tháng 5 2019

không đủ điều kiện

13 tháng 7 2021

Nhanh lên mik cần gấp!!!

 

21 tháng 2 2023

D A B C E

Do AE gấp đôi EC nên suy ra EC = \(\dfrac{1}{3}\) AC. Vậy chiều cao của ADE sẽ = \(\dfrac{2}{3}\) chiều cao của tam giác ABC do được hạ từ E xuống đáy AD. Cạnh AD = DB = \(\dfrac{1}{2}\) AB. Diện tích tam giác ADE là:

180 : 3 x 2 : 2 = 60 (cm2)

Đáp số: 60cm2

Kẻ hình hơi xấu mong bạn thông cảm-

A B C E D I M N từ I kẻ IM vuông góc AC , từ B kẻ BN vuông góc AC  => IM // BN

áp dụng định lý Menelous vào tam giác BCD có 3 điểm A ,I , E thẳng hàng và cắt 3 cạnh tam giác :

\(\dfrac{EC}{EB}\cdot\dfrac{IB}{ID}\cdot\dfrac{AD}{AC}=1\)

=> 2 . \(\dfrac{IB}{ID}\) .  3/4  = 1

=> \(\dfrac{IB}{ID}=\dfrac{4}{3}\)

\(\Rightarrow\dfrac{DI}{DB}=\dfrac{3}{7}\)

Do IM // BN => \(\dfrac{DI}{DB}=\dfrac{IM}{BN}=\dfrac{3}{7}\) 

S abc = \(\dfrac{1}{2}BN\cdot AC\)     

S iad = \(\dfrac{1}{2}IM\cdot AD\)         \(\Rightarrow\dfrac{Siad}{Sabc}=\dfrac{IM}{BN}\cdot\dfrac{AD}{AC}=\dfrac{3}{7}\cdot\dfrac{3}{4}=\dfrac{9}{28}\)

mà S iad = 18  => S abc = 28*18 : 9 = 56