Cho tam giác ABC có diện tích 25 cm2. Trên AC lấy điểm M sao cho AM = 15 AC. Tính diện tích tam giác BMC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BE=1313× BC mà ABE và ABC chung chiều cao hạ từ A
nên SABESABE=1313 ×=217,5 : 3 = 72,5(cm2)
⇒SADESADE+SBDESBDE=SABESABE \
⇒SADESADE= SABESABE-SBEDSBED
⇒SADESADE =72,5 – 14,55 = 57,95(cm2)
⇒ ADE và ABE chung chiều cao hạ từ E nên SADESABESADESABE=ADABADAB
⇒AB =SADESABESADESABE×AD=72,557,9572,557,95×8=10 (cm)
Cho tam giác ABC có diện tích 240 cm2. Trên BC lấy điểm D sao cho BD=3DC. Tínhdiện tích tam giác ABD. (ĐS cm2) là bài 3. Cho tam giác ABC có diện tích là 400 cm2. Điểm M trên AC sao cho 2xAM=3xCM.Tính diện tích tam giác ABM. (ĐS: cm2) là bài 4. Cho tam giác ABC có diện tích 720 cm2. Trên BC lấy M sao cho BM=1/2 CM. NốiAM , trên AM lấy N sao cho AN=3NM. Tính diện tích tam giác ABN. (ĐS: cm2) là bài 5 nhá các bạn. mình quên cách ra
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
SBMC = 8/20SABC = 100 x 8/20 = 40 (cm2)
Hai tam giác này có chung đường cao kẻ từ C và MB = 8/20AB.
SAMC = SABC – SBMC = 100 – 40 = 60 (cm2)
Tương tự:
SAMN = 5/20SAMC = 60 x 5/20 = 15 (cm2)
Đáp số: 15cm2.
tích nha các bạn mik hứa sẽ tích lại thề luôn
Đào Ngọc Minh Thư
Lời giải:
Nếu coi AM là 2 phần thì MC là 3 phần. Khi đó: $AC=AM+MC$ tương ứng với $2+3=5$ phần
$\Rightarrow \frac{AM}{AC}=\frac{2}{5}$
$\frac{S_{ABM}}{S_{ABC}}=\frac{AM}{AC}=\frac{2}{5}$
$S_{ABM}=\frac{2}{5}\times S_{ABC}=\frac{2}{5}\times 100=40$ (cm2)
Diện tích tam giác MNB là:
36:3x2=24(cm2)
Diện tích tam giác ABN hay diện tích tam giác BNC là:
36+24=60(cm2)
Diện tích tứ giác BMNC là:
24+60=84(cm2)
Đáp số: 84 cm2
a} Vì tan giác bmc có đáy bằng 1/2 ba và có cùng độ cao
=> diện tích tam giác bmc = 180 : 2 = 90 (cm2)
b} Vì tam giác bmn có đáy bằng 2/3 bc và có cùng độ cao
=> diện tích tam giác bmn = 90x2/3 = 60 (cm2)
Đáp số: a} 90 cm2
b} 60 cm2
Sửa đề; AM=1/5AC
Ta có: AM+MC=AC
=>\(MC+\dfrac{1}{5}AC=AC\)
=>\(CM=\dfrac{4}{5}AC\)
=>\(S_{BMC}=\dfrac{4}{5}\times S_{ABC}=\dfrac{4}{5}\times25=20\left(cm^2\right)\)