Tính nhanh:
1+2+2^2+2^3+...+2^62+2^63+2^64
giúp mình nhé cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2 ^ 2 + 2 ^ 3 + .... + 2 ^ 62 + 2 ^ 63
2S = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 63 + 2 ^ 64
2S - S = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 63 + 2 ^ 64 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + .... + 2 ^ 62 + 2 ^ 63 )
S = 2 ^ 64 - 1
S2=(1+2+2^2+2^3+...+2^62+2^63)*2
=2+2^2+2^3+...+2^63+2^64
S2-S= (2+2^2+2^3+...+2^63+2^64) - (1+2+2^2+2^3+...+2^62+2^63)
S = 2^64 - 1
+ \(\frac{1}{n\times\left(n+2\right)}=\frac{\left(n+2\right)-n}{n\times\left(n+2\right)}\)
\(=\frac{n+2}{n\times\left(n+2\right)}-\frac{n}{n\times\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)
+ \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)
\(=5-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=5-\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}+\frac{1}{22}=\frac{50}{11}\)
Tính nhanh:
\(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)
Đặt \(A=\frac{2}{1+2}+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)
\(=2-1+2+\frac{3}{12+3}+...+2+3+\frac{20}{1+2+3+...+20}\)
\(=\) Không biết! Nhờ Doraeiga với At the speed of light - Trang của At the speed of light - Học toán với OnlineMath giải nhé! Tui mới lớp 6 thôi! Chưa học tới bài này
\(A=\frac{2}{1+2}+\frac{2+3}{1+2+3}+....+\frac{2+3+...+20}{1+2+3+...+20}\)
\(A=\frac{2}{3}+\frac{5}{6}+...+\frac{209}{210}\)
\(A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{210}\right)\)
\(A=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{210}\right)\)
\(A=19-\left(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{420}\right)\)
\(A=19-\left(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{20.21}\right)\)
\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\right]\)
\(A=19-\left[2\cdot\left(\frac{1}{2}-\frac{1}{21}\right)\right]\)
\(A=19-\left[2\cdot\frac{19}{42}\right]=19-\frac{19}{21}=\frac{380}{21}\)
Vậy A = .....
a) S=1 + 2 + 2^2 + 2^3 +...+ 2^63
2S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64
S=2S-S=(2 + 2^2 + 2^3 + 6^4 +...+ 2^64)-(1 + 2 + 2^2 + 2^3 +...+ 2^63)
S=2 + 2^2 + 2^3 + 2^4 +...+ 2^64 - 1 - 2 - 2^2 - 2^3 -...- 2^63
S=2^64 - 1
2A=2+2^2+...+2^64
2A-A=(2+2^2+...+2^64)-(1+2+2^2+...+2^63)
=>A=2^64-1
Đặt \(A=1+2+2^2+2^3+...+2^{64}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{65}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{65}-\left(1+2+2^2+...+2^{64}\right)\)
\(\Rightarrow A=2+2^2+2^3+...+2^{65}-1-2-2^2-...-2^{64}\)
\(\Rightarrow A=2^{65}-1\)