cho góc xOy=60 độ lấy A trên Ox .Vẽ tia Az sao cho Az nằm ngoài góc xOy và xAz = 120 độ .CMR :
a) Az song song với Oy
b) Goil Om ,On là tia phân giác của góc xOy và góc OAz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) cm ZZ'\\OY
vẽ tia a sao cho a\\oy và đi qua OX
ta có aAO+YOA=1800
aAO+1500=1800
aAO=1800-1500
aAO=300
a\\Oy
MÀ aAO=OAZ=300 => aAO VÀ OAZ LÀ 1 => ZZ'\\Oy
B) ta có O1=A1 ( SO LE TRONG)
O=A=1500 => A2=O2=750 ( VÌ SL TRONG VÀ Om, AN là các tia phân giác của góc xOy và OAz')
ta có O1+A2+N=O2+A1+M=1800 => N=M => \(\Delta AON=\Delta AOM\Rightarrow O_2=A_2\Rightarrow OM\backslash\AN\)
vì điểm a nằm trong góc xoy nên tia ay nằm giữa tia oc và oy
suy ra xOa +AOy = xOy suy ra xOa =xOy -AOy
thay vào ta có xOa 12độ -75đô=45 độ
vì tia ox nằm giữa tia OA và Ob nên xOa+xOB= AOB
thay vào ta có AOB= 45độ+ 135độ
suy ra AOB =180độ
vậy A,Ô,B thẳng hàng
suy ra AOB = 180độ
vậy A,O,B thẳng hàng
a) Ta có: OAz^ + xOy^ = 30o + 150o = 180o
Mà OAz^ và xOy^ trong cùng phía
=> zz' // Oy
b) OAz^ + OAz'^ = 180o (kề bù)
OAz'^ = 180o - OAz^ = 180o - 30o = 150o
mà OAn^ = OAz'/2 = 150o/2 = 75o
Mặt khác: xOm^ = xOy^/2= 150o/2 = 75o
Ta có: OAn^ và xOm^ ở vị trí sole trong
=> An // Om
Giải:
a) Vì \(\widehat{xOy}+\widehat{OAz}=180^o\) và 2 góc này nằm cùng phía nên Az // Oy hay zz' // Oy ( đpcm )
b) Vì OM là tia phân giác của \(\widehat{xOy}\) nên
\(\widehat{xOM}=\frac{1}{2}.\widehat{xOy}=75^o\)
Ta có: \(\widehat{xAz}+\widehat{zAO}=180^o\)
\(\Rightarrow\widehat{xAz}+30^o=180^o\)
\(\Rightarrow\widehat{xAz}=150^o\)
Vì AN là tia phân giác của \(\widehat{xAz}\) nên
\(\widehat{xAN}=\frac{1}{2}.\widehat{xAz}=75^o\)
Ta thấy \(\widehat{xOM}=\widehat{xAN}\left(=75^o\right)\) và 2 góc này ở vị trí đồng vị nên AN // OM (đpcm)
a/ta có góc xoy+ góc oaz=30+150=180(ở vị trí trong cùng phía)
do đó AZ//OY ---> ZZ'/OY
b/ta có om là p/g của góc xoy --> góc AOm =75 độ
và on là p/g của góc oaz'--->góc oan=(180-30):2=75
mà hai góc trên ở vị trí so le trong
vậy AN//OM