K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

tổng đó bằng 3,5

\(=1+1.69\cdot1.3^2+1.65=5.5061\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

ĐK: $x>0; a\neq 1; a\neq 4$

a) 

$M=\frac{\sqrt{a}-(\sqrt{a}-1)}{\sqrt{a}(\sqrt{a}-1)}:\frac{(\sqrt{a}+1)(\sqrt{a}-1)-(\sqrt{a}-2)(\sqrt{a}+2)}{(\sqrt{a}-2)(\sqrt{a}-1)}$

$=\frac{1}{\sqrt{a}(\sqrt{a}-1)}:\frac{3}{(\sqrt{a}-2)(\sqrt{a}-1)}=\frac{1}{\sqrt{a}(\sqrt{a}-1)}.\frac{(\sqrt{a}-2)(\sqrt{a}-1)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}$

b) 

$M>\frac{-1}{2}\Leftrightarrow \frac{\sqrt{a}-2}{3\sqrt{a}}+\frac{1}{2}>0$

$\Leftrightarrow \frac{5\sqrt{a}-4}{6\sqrt{a}}>0$

$\Leftrightarrow 5\sqrt{a}-4>0$

$\Leftrightarrow a>\frac{16}{25}$

Kết hợp với ĐKXĐ thì $a>\frac{16}{25}; a\neq 1; a\neq 4$

1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8

Khi x=201 thì A=10*201+8=2018

2: B=4x^2+20x+25-4x^2+12=20x+37

Khi x=1/20 thì B=1+37=38

7 tháng 7 2023

1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)

\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)

\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)

\(A=4\left(4x+2\right)-6x\)

\(A=16x+8-6x\)

\(A=10x+8\)

Thay \(x=201\) vào A ta có:

\(A=10\cdot201+8=2010+8=2018\)

Vậy: ....

2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)

\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)

\(B=4x^2+20x+25-4x^2+36\)

\(B=20x+61\)

Thay \(x=\dfrac{1}{20}\) vào B ta có:

\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)

Vậy: ...

\(=1+1.79^3-1.71^3=1.735128\)

HQ
Hà Quang Minh
Giáo viên
7 tháng 10 2023

a) \(\left( {\frac{7}{3} + 3,5} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + 0,5\)

\(\begin{array}{l} = \left( {\frac{7}{3} + \frac{7}{2}} \right):\left( { - \frac{{25}}{6} + \frac{{22}}{7}} \right) + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 25.7 + 22.6}}{{6.7}} + \frac{1}{2}\\ = \frac{{35}}{6}:\frac{{ - 43}}{{7.6}} + \frac{1}{2} = \frac{{35}}{6}.\frac{{7.6}}{{ - 43}} + \frac{1}{2}\\ = \frac{{ - 245}}{{43}} + \frac{1}{2} = \frac{{ - 245.2 + 43}}{{43.2}} = \frac{{ - 447}}{{86}}\end{array}\)

b) \(\frac{{38}}{7} + \left( { - 3,25} \right) - \frac{{17}}{7} + 4,55\)

\(\begin{array}{l} = \left( {\frac{{38}}{7} - \frac{{17}}{7}} \right) + \left( {4,55 - 3,25} \right)\\ = \frac{{38 - 17}}{7} + 1,3 = \frac{{21}}{7} +1,3\\ = 3 + 1,3 =  4,3\end{array}\)