K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Bài này dùng hằng đẳng thức cũng được :v

Ta có: \(\Delta=b^2-4ac=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

Dễ chứng minh được \(\Delta< 0\) với a,b,c là 3 cạnh của tam giác. Thật vậy:

\(\left(a+b+c\right)^2-4\left(ab+bc+ca\right)< 0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Mặt khác: \(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ab+bc\)

\(c^2< ac+bc\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Rightarrow\Delta< 0\)

Vậy: Phương trình vô nghiệm

P/S: Trình độ còn non, chưa học phần này, làm có thể sai sót

10 tháng 1 2020

sai rồi cùi để sư phụ chỉ cho👎👎👎👎👎👎👎👎👎👎👎👎👎👎👎👎🏿🦷

2 tháng 10 2019

Phương trình x2 + (a + b + c)x + (ab + bc + ca) = 0

Có  Δ = (a + b + c)2 − 4(ab + bc + ca)

= a2 + b2 + c2 – 2ab – 2bc – 2ac

= (a – b)2 – c2 + (b – c)2 – a2 + (a – c)2 – b2

= (a – b – c)(a + c – b) + (b – c – a)

(a + b – c) + (a – c – b)(a – c + b)

Mà a, b, c là ba cạnh của một tam giác nên

a − b − c < 0 b − c − a < 0 a − c − b < 0 ; a + c − b > 0 a + b − c > 0

Nên Δ < 0 với mọi a, b, c

Hay phương trình luôn vô nghiệm với mọi a, b, c

Đáp án cần chọn là: D

NV
30 tháng 7 2021

a.

\(\Delta=\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\Rightarrow a-b-c< 0\\a+c>b\Rightarrow a-b+c>0\\a+b>c\Rightarrow a+b-c>0\end{matrix}\right.\)

\(\Rightarrow\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

NV
30 tháng 7 2021

b.

\(\Delta=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

Do a;b;c là độ dài 3 cạnh của 1 tam giác nên:

\(\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

\(\Rightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

\(\Rightarrow\Delta< 0\)

\(\Rightarrow\) Phương trình vô nghiệm

Đề bài sai

19 tháng 11 2023

loading...

Y
4 tháng 6 2019

Δ \(=\left(a+b+c\right)^2-4\left(ab+bc+ca\right)\)

\(=a^2+b^2+c^2-2ab-2ab-2ac\)

+ a,b,c là 3 cạnh của 1 Δ

\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2ab+2bc+2ca\)

\(\Rightarrow\Delta< 0\)

=> pt vô nghiệm

NV
14 tháng 12 2020

\(\left(a^2+b^2+c^2+1\right)x=ab+bc+ca\)

\(\Leftrightarrow x=\dfrac{ab+bc+ca}{a^2+b^2+c^2+1}\)

Ta có:

\(x^2-1=\dfrac{\left(ab+bc+ca\right)^2}{\left(a^2+b^2+c^2+1\right)^2}-1=\dfrac{\left(ab+bc+ca-a^2-b^2-c^2-1\right)\left(ab+bc+ca+a^2+b^2+c^2+1\right)}{\left(a^2+b^2+c^2+1\right)^2}\)

\(=\dfrac{\left[-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2-2\right]\left[\left(a+b+c\right)^2+a^2+b^2+c^2+2\right]}{4\left(a^2+b^2+c^2+1\right)^2}< 0\)

\(\Rightarrow x^2-1< 0\Rightarrow\left|x\right|< 1\)

27 tháng 11 2015

\(\Delta=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)

    \(=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)<0\) vì chỉ có b -c -a <0

=> pt vô nghiệm