K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 4

Lời giải:
Gọi $d=ƯCLN(2n-3, n+7)$
$\Rightarrow 2n-3\vdots d; n+7\vdots d$

$\Rightarrow 2(n+7)-(2n-3)\vdots d$

$\Rightarrow 17\vdots d$

Để $A$ không tối giản thì $d=17$

$\Rightarrow n+7\vdots 17$

$\Rightarrow n+7=17k$ với $k$ tự nhiên khác 0

$\Rightarrow n=17k-7$

Vì $n< 200\Rightarrow 17k-7< 200$

$\Rightarrow k< 13$

Mà $k$ là stn khác 0 nên $k\in \left\{1; 2;3;...; 12\right\}$

Có $12$ số $k$ thỏa mãn, kéo theo có $12$ số $n$ thỏa mãn.

4 tháng 5 2023

miik cần gấp lắm mai trường mình thi rồi mong mọi người giải hộ ;-;

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)

=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101

=>1-1/(n+1)=100/101

=>1/(n+1)=1/101

=>n+1=101

=>n=100

12 tháng 7 2023

câu a đâu bn?

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

27 tháng 12 2020

Nguyễn Việt Lâm; Nguyễn Lê Phước Thịnh giúp vs!

NV
27 tháng 12 2020

Gọi \(d=ƯC\left(n^2+4;n+5\right)\)

\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)

\(\Rightarrow5n-4⋮d\)

\(\Rightarrow5\left(n+5\right)-29⋮d\)

\(\Rightarrow29⋮d\)

\(\Rightarrow d=\left\{1;29\right\}\)

Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)

\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)

\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)

\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.