TÌM GTLN:C=-X^2+2*x*y-4y^2+2*x+10*y-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà :vv
Ta có: \(x^2+4y^2-6x+4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
Đến đây tự giải...
<=> x^2-6x+9+4y^2+4y+1=0
<=> x^2-2.3.x+3^2+(2y)^2+2.2y.1+1=0
<=>(x-3)^2+(2y+1)^2=0
<=> x-3=0 và 2y+1=0
<=> x=3 và y=-1/2
\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)
a, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)
b, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)
c, Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)
d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)
\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)
sửa nè
x^2 +4y^2 - 6x +4y + 10 = 0
<=>x2-6x+9+4y2+4y+1=0
<=>(x-3)2+(2y+1)2=0
<=>x-3=0 và 2y+1=0
<=>x=3 và 2y=-1
<=>x=3 và y=-1/2
nhầm j
x^2 +4y^2 - 6x +4y + 10 = 0
<=>x2-6x+9+4y2+4y+1=0
<=>(x-3)2+(2y+1)2=0
<=>x-3=0 và 2y-1=0
<=>x=3 và 2y=1
<=>x=3 và y=1/2
a: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
b: Ta có: \(x^2+y^2-4x+y+5\)
\(=\left(x^2-4x+4\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)
Dấu '=' xảy ra khi x=2 và \(y=-\dfrac{1}{2}\)
=(-x^2+2xy+2x)-(4y^2-10y+3)
=-(x^2-2xy-2x)-(4y^2-10y+3)
=-[x^2-2x(y-1)]-(4y^2-10y+3)
=-[x^2-2x(y-1)+(y-1)^2]-[4y^2-10y-(y-1)^2+3]
=-[x^2-2x(y-1)+(y-1)^2]-(4y^2-10y-y^2+2y-1+3)
=-(x-y+1)^2-(3y^2-8y+2)
=-(x-y+1)^2-3(y^2-4/3*2*y+16/9+2/3-16/9
=-(x-y+1)^2-3[(y-4/3)^2-10/9]
=-(x-y+1)^2-3(y-4/3)^2+10/3