trong một cuộc tranh giải vô địch về bóng đá có 20 đội tham gia. Số nhỏ nhất các trận đấu là bao nhiêu để trong 3 đội bất kì luôn tìm dc 2 đội đã chơi với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các đội bóng đấu vòng tròn hai lượt đi và lượt về. Khi đó việc xếp số trận đấu được chia làm 14 giai đoạn:
Đội 1 có đấu 13 trận với 13 đội còn lại;
Đội 2 có đấu 13 trận với 13 đội còn lại;
…( bạn tự viết nốt nhá )
Đội 14 có đấu 13 trận với 13 đội còn lại.
Vậy có tất cả 13 + 13 + 13 + … + 13 (có 14 số 13) = 13.14 = 182 trận đấu.
Học tốt !
copp
https://haylamdo.com/toan-10-ct/bai-7-trang-32-toan-lop-10-tap-2.jsp
Mỗi trận đấu gồm 2 đội từ 14 đội và trên sân nhà hay sân đối thủ, nên mỗi trận đấu là một cách chọn 2 đội và sắp xếp chúng. Do đó, mỗi trận đấu là một chỉnh hợp chập 2 của 14 phần tử. Vậy số trận đấu có thể xảy ra là:
\(A_{14}^2 = 14.13 = 182\) (trận)
Xét A là đội có số trận thắng nhiều nhất.
Vì tổng số trận thắng là (8.7):2=28 (trận), nên số trận thắng của A>/=4
Xét đội mà A đã thắng ta cũng tìm được đội B thắng ít nhất 2 trong 3 đội còn lại.
Cuối cùng trong hai đội mà B đã thắng, chọn C là đội thắng đội D còn lại thì bốn đội A, B, C, D thỏa mãn đề bài.
Đáp án A
Số vòng đấu là vòng đấu (gồm cả lượt đi và về)
Mỗi vòng đấu có 7 trận đấu
Do đó có tất cả trận đấu
Đáp án B.
Tổng số trận đấu trong giải đấu là:
Sau mỗi trận hòa, tổng số điểm 2 đội nhận được là 1.2 =2.
Sau mỗi trận không hòa, tổng số điểm 2 đội nhận được là 3 + 0 = 3.
Tổng số điểm của tất cả các đội sau khi kết thúc giải đấu là:
65.2 + (182 – 65).3 = 481.