C/M Hiệu bình phương của 2 số lẻ chia hết cho 8 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số lẻ đó có dạng 2k+1 và 2q+1 ( k,q thuộc N )
Xét : (2k+1)^2-(2q+1)^2 = (2k+1-2q-1).(2k+1+2q+1) = (2k-2q).(2k+2q+2) = 4.(k-q).(k+q+1)
Ta thấy : k+q+1-(k-q) = k+q+1-k+q = 2q+1 lẻ
=> trong 2 số k+q+1 và k-q có 1 số chẵn => (k+q+1).(k-q) chia hết cho 2
=> (2k+1)^2-(2q+1)^2 chia hết cho 8
=> ĐPCM
k mk nha
Theo đề ta có hiệu ( 2a+1 )^2 - ( 2b+1 )^2
Có ( 2a+1 )^2 = 2^2a^2 + 2a + 2a - 1 = 4a^2 + 4a - 1 = 4a( a - 1 ) - 1
Có ( 2b+1 )^2 = 2^2b^2 + 2b + 2b - 1 = 4b^2 + 4b - 1 = 4b( b - 1 ) - 1
Vậy giờ ta được đa thức [ 4a( a - 1 ) - 1 ] - [ 4b( b - 1 ) - 1 ]
Có a( a - 1 ) và b( b - 1 ) là tích của hai số tự nhiên liên tiếp => chúng chia hết cho 2
Thế a( a - 1 ) = 2x ; b( b - 1 ) = 2y
Ta được ( 4.2y - 1 ) - ( 4.2x - 1 ) = ( 8y - 1 ) - ( 8x - 1 ) = 8y - 1 - 8x + 1 = 8y - 8x = 8( y - x )
=> Hiệu của bình phương hai số lẻ bất kì luôn chia hết cho 8
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
Gọi 2 số lẻ đó là 2k + 1 ; 2n + 1 (k;n là số tự nhiên)
Khi đó (2k + 1)2 - (2n + 1)2
= (2k + 1 + 2n + 1)(2k + 1 - 2n - 1)
= (2k + 2n + 2)(2k - 2n)
= 4(k + n + 1)(k - n) \(⋮4\) (0)
Nếu k ; n cùng chẵn hoặc cùng lẻ => k - n \(⋮2\) => đpcm (1)
Nếu k lẻ n chẵn hay k chẵn n lẻ => k + n + 1 \(⋮2\)(đpcm) (2)
Từ (0) ; (1) ; (2) => đpcm
Tham khảo nhé bạn:
https://olm.vn/hoi-dap/detail/7431752799.html
~Std well~
#Mina
Gọi số lẻ thứ nhất là 2k - 1 .
Gọi số lẻ thứ 2 là 2k + 1 .
Ta có :
\(\left(2k-1\right)^2-\left(2k+1\right)^2\)
\(=\left(2k-1+2k+1\right)\left(2k-1-2k-1\right)\)
\(=4k.\left(-2\right)=-8k⋮8\)
Vậy ............................
Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8
sọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
=>(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy bình phương của 2 số lẻ liên tiếp chia hết cho 8
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8
Gọi 2k+1 và 2p+1 là một số lẻ
Hiệu các bình phương của 2 số lẻ là:
(2k+1)2-(2p+11)2=(2k+1+2p+1).(2k+1-2p-1)
=(2k+2p+2).(2k-2p)
=(4.k+p+1).(k-p)
=4.(k+p+1).(k+p-2p)
=4.(k+p+1).(k+p)-8p.(k+p)
Vì 4.(k+p+1).(k+p)\(⋮\)8 và 8p.(k+p+1)\(⋮\)8
Vậy (2k+1)2 -(2p+11)2\(⋮\)8