cho a+b=c=2024 và 1/a+b + 1/b+c + 1/c+a = 1/2024. tính M=a/b+c + b/c+a + c/a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta c/m: \(x^5-x⋮30\forall x\in Z\)
+ \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)
\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)
Vì \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮5\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\) ( do 2,3,5 đôi một nguyên tố cùng nhau ) (1)
+ \(\left(x-1\right)x\left(x+1\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)x\left(x+1\right)⋮2\\\left(x-1\right)x\left(x+1\right)⋮3\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)x\left(x+1\right)⋮6\) ( do \(\left(2,3\right)=1\) )
\(\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\) (2)
Từ (1) và (2) => đpcm
Trở lại bài toán ta có:
\(P-M=a^{2019}\left(a^5-a\right)+b^{2019}\left(b^5-b\right)+c^{2019}\left(c^5-c\right)⋮30\)
( do \(a^5-a⋮30,b^5-b⋮30,c^5-c⋮30\) )
=> P và M có cùng số dư khi chia 30
=> P chia 30 dư 7
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
Tử :Vì a là stn khác 0 => trong 2 số a và a+1 có 1 số chẵn => a (a+1) là số chẵn =>a (a+1) + 2024 là số chẵn => a(a+1) + 2024 chia hết cho 2
Mẫu :+)Nếu b+c chẵn thì bc(b+c) chẵn => bc(b+c) chia hết cho 2
+)Nếu b+c lẻ thì trong 2 số b và c có 1 số chẵn và 1 số lẻ=> bc(b+c) chẵn =>bc(b+c) chia hết cho 2
Vì cả tử và mẫu đều chia hết cho 2 => phân số đó chưa tối giản
Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)
Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(=2\sqrt{5}+3-2\sqrt{5}\)
\(=3\)
\(\Rightarrow a=b+3\)
Thay \(a=b+3\) vào (1), ta được:
\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)
\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)
\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)
\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)
\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)
\(=2060\)
$\Rightarrow$ Chọn đáp án $C$.
Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)
\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)
\(\Rightarrow a-b=3\)
Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)
\(=a^3+a^2-b^3+b^2-11ab+2024\)
\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)
\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)
\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)
\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)
\(=3^3+3^2+2024\)
\(=2060\)
\(\Rightarrow C\)
a) \(\left(x-2024\right)^{2023}=1\)
\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)
\(\Rightarrow x-2024=1\)
\(\Rightarrow x=2025\)
b) \(\left(2x-1\right)^5=32\)
\(\Rightarrow\left(2x-1\right)^5=2^5\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(5< 2^x< 100\)
\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)
\(\Rightarrow2< x< 7\)
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
c, |2\(x\) + 1| + |3\(x\) - 1| = 0
vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0
⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0
⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\)
Vậy \(x\) \(\in\) \(\varnothing\)
a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|
4.|3\(x\) -1| - 2.|3\(x\) - 1| = 1,5
Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)
Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5
12\(x\) - 4 - 6\(x\) + 2 = 1,5
6\(x\) - 2 = 1,5
6\(x\) = 1,5 + 2
6\(x\) = 3,5
\(x\) = 3,5: 6
\(x\) = \(\dfrac{7}{12}\)
Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)
Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5
-12\(x\) + 4 + 6\(x\) - 2 = 1,5
-6\(x\) + 2 = 1,5
6\(x\) = 2- 1,5
6\(x\) = 0,5
\(x\) = 0,5 : 6
\(x\) = \(\dfrac{1}{12}\)
Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\); \(\dfrac{7}{12}\)}
Điều kiện xác định ::
a≠−b;b≠−c;c≠−a�≠-�;�≠-�;�≠-�
Theo giả thuyết, ta có :
+)a+b+c=2024+)�+�+�=2024
+)1a+b+1b+c+1c+a=12+)1�+�+1�+�+1�+�=12
⇒(a+b+c)(1a+b+1b+c+1c+a)=2024.12(⇒(�+�+�)(1�+�+1�+�+1�+�)=2024.12( Nhân vế −- vế ))
⇔aa+b+ab+c+ac+a+ba+b+bb+c+bc+a+ca+b+cb+c+cc+a=1012⇔��+�+��+�+��+�+��+�+��+�+��+�+��+�+��+�+��+�=1012
⇔(ab+c+bc+a+ca+b)+aa+b+ac+a+ba+b+bb+c+cb+c+cc+a=1012⇔(��+�+��+�+��+�)+��+�+��+�+��+�+��+�+��+�+��+�=1012
⇔N+(aa+b+ba+b)+(bb+c+cb+c)+(cc+a+ac+a)=1012⇔�+(��+�+��+�)+(��+�+��+�)+(��+�+��+�)=1012
⇔N=1012−a+ba+b−b+cb+c−c+ac+a⇔�=1012-�+��+�-�+��+�-�+��+�
⇔N=1012−1−1−1⇔�=1012-1-1-1
⇔N=1009⇔�=1009
Vậy N=1009
Ta có M=c/a+b +a/b+c + b/c+a
M+1+1+1=c/a+b +1+ a/b+c +1 +b/c+a+1
M+3=c/a+b + a+b/a+b + a/b+c + b+c/b+c + b/c+a + c+a/c+a
M+3=c+a+b/a+b + a+b+c/b+c + b+a+c/c+a
mà c+a+b=a+b+c=b+a+c=2024
=>M+3=2024/a+b + 2024/b+c + 2024/a+c
M+3=2024x(1/a+b + 1/b+c + 1/a+c)
mà 1/a+b + 1/b+c + 1/a+c=2024
=>M+3=2024x1/2024
M+3=1
M=1-3
M=-2