Cho tam giác ABC vuông cân tại A , trung tuyến AM và một diểm D trên cạnh BC ( D khác M ) . Hạ BH và CK vuông góc với đường thẳng AD ( H, K thuộc AD . Gọi giao điểm của BH và CK với AM lần lượt là E và F a) góc MAB =? b) ∆AHB = ∆ CKA c) ∆DEF vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik không hiểu đề lắm bạn ơi, bạn đọc và sửa lại giúp mình nhé, rồi mình giải cho
Gọi giao điểm của BH và CK là F
Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE và \(\widehat{ADB}=\widehat{AEC}\)
Ta có: \(\widehat{ADB}+\widehat{HBD}=90^0\)(ΔHDB vuông tại H)
\(\widehat{AEC}+\widehat{KCE}=90^0\)(ΔKCE vuông tại K)
mà \(\widehat{ADB}=\widehat{AEC}\)
nên \(\widehat{HBD}=\widehat{KCE}\)
Ta có: \(\widehat{HBD}=\widehat{KCE}\)
\(\widehat{FBC}=\widehat{HBD}\)(hai góc đối đỉnh)
\(\widehat{FCB}=\widehat{KCE}\)(hai góc đối đỉnh)
Do đó: \(\widehat{FBC}=\widehat{FCB}\)
=>ΔFBC cân tại F
=>FB=FC
=>F nằm trên đường trung trực của BC(1)
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,M,F thẳng hàng
=>BH,AM,CK đồng quy tại F
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
a) vì trong tam giác cân đường trung tuyến đồng thời là đường phân giác nên AM là tia phân giác của góc BAC
⇒ góc BAM = góc CAM = 1/2 góc BAC
Mà góc BAC = 90 độ nên góc BAM = 45 độ
b) Xét ∆AHB và ∆CKA có:
góc AHB = góc CKA (= 90 độ)
BA = AC (∆ ABC vuông cân)
góc BAH = góc ACK (cùng phụ với góc CAK)
⇒ ∆AHB = ∆CKA (ch-gn)