CTV và GV ơi giúp em vs
Chứng minh rằng ΔABC đồng dạng với một tam giác có ba cạnh lần lượt bằng độ dài đường cao ứng với ba đỉnh của tam giác ABC.
Cô thầy ơi cứu em :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ha=9; hb=12; hc=16
=>hc*9=ha*16=hb*12
=>hc/16=ha/9=hb/12
=>Haitam giác này đồng dạng
b: ha=4; hb=5; hc=6
=>ha*6=24; hb*5=25; ha*4=24
=>Hai tam giác này ko đồng dạng
Gọi AH,BK,CE lần lượt là các đường cao của ΔABC
Lấy DF,DG,FG lần lượt bằng AH,BK,CE
=>AH:BK:CE=BC:AC:AB(Định lí)
=>AH/BC=BK/AC=CE/AB
=>DF/BC=DG/AC=FG/AB
=>ΔDFG đồng dạng với ΔBCA
a)\(\Delta ABC\)ĐỀUCÓ CÁC ĐƯỜNG CAO AD ,BE ,CF BẰNG NHAU .TA PHẢI CHỨNG MINH \(\Delta ABC\)ĐỀU.\(\Delta FBC=\Delta ECB\))(ẠNH HUYỀN CẠNH GÓC VUÔNG)SUY RA \(\widehat{B}=\widehat{C}\)CHỨNG MINH TƯƠNG TỰ TA ĐƯỢC\(\widehat{A}=\widehat{C}\)
b)GỌI ĐỘ DÀI MỖI CẠNH TAM GIÁC LÀ X
XÉT\(\Delta ADC\)VUÔNG TẠI D CÓ \(AC^2=AD^2+CD^2\)(ĐỊNH LÝ PI-TA-GO)
TỪ ĐÓ TÍNH ĐƯỢC X=A