K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2022

chịu hoi =))))))

 

15 tháng 6 2022

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

a: sin ACB=AH/AC

=>AH/AC=1/2

=>AH=4cm

b: sin ABC=2/3

=>AH/AB=2/3

=>AB=6cm

HB=căn 6^2-4^2=2căn  5cm

HC=căn 8^2-4^2=4căn  3cm

BC=HB+HC=2căn5+4căn3(cm)

S ABC=1/2*BA*BC*sinB

=1/2*1/2*6*(2căn5+4căn3)

=3(căn 5+2căn 3)

NV
23 tháng 8 2021

\(\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{3}\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}\)

\(AB.AC=32\sqrt{6}\Rightarrow\dfrac{AC^2\sqrt{6}}{3}=32\sqrt{6}\)

\(\Rightarrow AC^2=96\Rightarrow AC=4\sqrt{6}\)

\(\Rightarrow AB=\dfrac{AC\sqrt{6}}{3}=8\)

Kẻ đường cao AD ứng với BC

Do \(C=45^0\Rightarrow\widehat{CAD}=90^0-45^0=45^0\Rightarrow\Delta ACD\) vuông cân tại D

\(\Rightarrow AD=CD=\dfrac{AC}{\sqrt{2}}=4\sqrt{3}\)

Pitago tam giác vuông ABD:

\(BD=\sqrt{AB^2-AD^2}=4\)

\(\Rightarrow BC=CD+BD=4+4\sqrt{3}\)

\(cosB=\dfrac{BD}{AB}=\dfrac{4}{8}=\dfrac{1}{2}\Rightarrow B=60^0\)

\(S_{ABC}=\dfrac{1}{2}AD.BC=\dfrac{1}{2}.4\sqrt{3}.\left(4+4\sqrt{3}\right)=...\)

NV
23 tháng 8 2021

undefined

11 tháng 5 2022

a, Xét tam giác ADB và tam giác AEC có 

^ADB = ^AEC = 900

^DAB _ chung 

Vậy tam giác ADB ~ tam giác AEC (g.g) 

b, \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\Rightarrow AD.AC=AB.AE\)

c, \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

11 tháng 5 2022

Cám ơn bn <3

1 tháng 10 2023

Theo định lý sin ta có:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)

Mà: ΔAEC vuông tại E ta có:

\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)

ΔABD vuông tại D nên ta có:

\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)

Theo định lý sin ta có:

\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)

\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)

1 tháng 10 2023

hình ạ

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/DC=AB/AC=2/3

=>3DB-2DC=0

mà DB+DC=18

nên DB=7,2cm; DC=10,8cm

b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có

góc BDH=góc CDK

=>ΔBDH đồng dạng với ΔCDK

=>BH/CK=BD/CD=2/3

 

NV
26 tháng 12 2022

Áp dụng định lý hàm cosin:

\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{2^2+3^2-2.2.3.cos60^0}=\sqrt{2}\)

Diện tích tam giác:

\(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{1}{2}.2.3.sin60^0=\dfrac{3\sqrt{3}}{2}\)