chứng minh rằng (8^7-2^12) chia hết cho14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 8^7-2^17=(2^3)^7-2^17=2^21-2^17=2^17.(2^3-1)=2^17.7 chia hết cho 7 (1)
Mặt khác: 8^7-2^17=2.(4^7-2^16) chia hết cho 2 (2)
Từ (1)(2)=> 8^7-2^17 chia hết cho 14 vì (2,7)=1.
S=[2+2^2+2^3]+[2^4+2^5+2^6]+...+[2^2008+2^2009+2^2010] CHIA HẾT CHO 14
SUY RA S CHIA HẾT CHO 14
GIỮ LỜI NHA
S = 2 + 22 + 23 + ... + 22010
= (2 + 22 + 23) + (24 + 25 + 26) + ... + (22008 + 22009 + 22010)
= 2(1 + 2 + 22) + 24(1 + 2 + 22) + ... + 22008(1 + 2 + 22)
= 2.7 + 24.7 + ... + 22008. 7
= 14 + 23.14 + ... + 22007.14
= 14(1 + 23 + ... + 22007) \(⋮\)14
a/ \(2^{n+3}-32=2^3.2^n-32=8\left(2^4-4\right)⋮8\)
b/ \(\left(3^8+3^7\right)-\left(2^8+2^7\right)=3^7\left(3+1\right)-2^7\left(2+1\right)=\)
\(=2^2.3^7-2^7.3=2^2.3\left(3^6-2^5\right)=12\left(3^6-2^5\right)⋮12\)
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả