1. So sánh:
a) 714 và 507.
b) 921 và 7297.
c) 3111 và 1714
d) 530 và 12410.
M.n giúp mình nha ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
\(\text{#040911}\)
\(a,\)
\(202^{303}\text{ và }303^{202}\)
Ta có:
\(202^{303}=\left(202^3\right)^{101}=\left(101^3\cdot2^3\right)^{101}=\left(101^3\cdot8\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}=\left(101^2\cdot3^2\right)^{101}=\left(101^2\cdot9\right)^{101}\)
Ta có:
\(8\cdot101^3=8\cdot101\cdot101^2=808\cdot101^2\)
Vì \(808>9\)
\(\Rightarrow808\cdot101^2>9\cdot101^2\)
\(\Rightarrow202^{303}>303^{202}\)
\(b,\)
Ta có:
\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\\ 37^{1320}=\left(37^2\right)^{660}=1369^{660}\\ \text{Vì }1331< 1369\\ \Rightarrow1331^{660}< 1369^{660}\\ \Rightarrow11^{1979}< 37^{1320}\)
\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)
\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)
\(\Rightarrow A=2^{2011}-1=B\)
\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)
\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)
\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)
A = 101 - 99 + 97 - 95 + 93 -91 + ... + 5-3 + 1
A=( 101 - 99 ) + ( 97 - 95 ) +(93 - 91 ) + ... + (5 + 3 ) + 1
A = (2 + 2 + 2 + .. + 2 )+ 1
Xét dãy số: 101; 97; 93;...;5
Số số hạng của dãy số trên là
[ ( 101 - 3 ) : 2 + 1 ] : 2 = 25
tổng của dãy số A là
2x 25 + 1 = 51
Đáp số 51
A=887 .884 B=886.885
A= 884 . 886 + 884 B = 886 . 884 +886
Vì 884 < 886
⇒A < B
\(A=1+5+5^2+5^3+..+5^{100}\)
\(5A=5+5^2+5^3+..+5^{101}\)
\(A=\frac{5^{101}-1}{4}\)\(SUYRA\) \(A< B\)
\(A=5^0+5+5^2+...+5^{100}.\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow5A-A=4A=\left(5+5^2+5^3+...+5^{101}\right)-\left(5^0+5+5^2+...+5^{100}\right)\)
\(=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
Còn lại tự lm nha bn
1.
a) 8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
b) Do 63 < 64 nên
63⁷ < 64⁷ (1)
Ta có:
64⁷ = (2⁶)⁷ = 2⁴²
16¹² = (2⁴)¹² = 2⁴⁸
Do 42 < 48 nên 2⁴² < 2⁴⁸
64⁷ < 16¹² (2)
Từ (1) và (2) 63⁷ < 16¹²
c) Do 17 > 16 nên 17¹⁴ > 16¹⁴ (1)
Do 32 > 31 nên 32¹¹ > 31¹¹ (2)
Ta có:
16¹⁴ = (2⁴)¹⁴ = 2⁶⁴
32¹¹ = (2⁵)¹¹ = 2⁵⁵
Do 64 > 55 nên 2⁶⁴ > 2⁵⁵
16¹⁴ > 32¹¹ (3)
Từ (1), (2) và (3) 17¹⁴ > 31¹¹
d) Do 39 < 40 nên 3³⁹ < 3⁴⁰ (1)
Do 20 < 21 nên 11²⁰ < 11²¹ (2)
Ta có:
3⁴⁰ = (3²)²⁰ = 9²⁰
Do 9 < 11 nên 9²⁰ < 11²⁰ (3)
Từ (1), (2) và (3) 3³⁹ < 11²¹
e) Ta có:
72⁴⁵ - 72⁴⁴ = 72⁴⁴.(72 - 1) = 72⁴⁴.71
72⁴⁴ - 72⁴³ = 72⁴³.(72 - 1) = 72⁴³.71
Do 44 > 43 nên 72⁴⁴ > 72⁴³
72⁴⁴.71 > 72⁴³.71
Vậy 72⁴⁵ - 72⁴⁴ > 72⁴⁴ - 72⁴³
a) \(8^5=2^{15};3.4^7=3.2^{14}\) lớn hơn \(2^{15}\)
\(\Rightarrow8^5\) nhỏ hơn \(3.4^7\)
\(A=1+2+2^2+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow2A-A=2^{2023}-1\)
\(\Rightarrow A=2^{2023}-1\)
\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)
\(\Rightarrow A< B\)
a) Ta có: 1,(81) = 1,8181…
Vì 1,8181… > 1,812 nên -1,8181… < -1,812 hay -1,(81) < -1,812
b) Ta có: \(2\frac{1}{7}\) = 2,142857….
Vì 2,142857….> 2,142 nên \(2\frac{1}{7}\) > 2,142
c) Vì 48,075… < 48,275… nên - 48,075…. > – 48,275…
d) Vì 5 < 8 nên \(\sqrt 5 \) < \(\sqrt 8 \)
a: -1,(81)>-1,812
b: 2+1/7>2,142
c: -48,075...>-48,275...
d: \(\sqrt{5}< \sqrt{8}\)
a) 714 và 507
714 = ( 72)7 = 497
507 giữ nguyên
Do 497 < 507 nên 714 < 507
b) 921 và 7297
921 giữ nguyên
7297 = (93)7 = 921
Do 921 = 921 nên 921 = 7297
c) chịu
d) 530 và 12410
530 = (53)10 = 12510
12410 giữ nguyên
Do 12510 > 12410 nên 530 > 12410
a, 714=(72)7=147
507=507
Vì 147 < 507
=> 714 < 507