Chứng minh rằng : 2018 số tự nhiên liên tiếp đều là hợp số .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=2x3x4x...x101
Ta xét 100 số tự nhiên liên tiếp sau:
a+2;a+3;..;a+1001
Vì 2 chia hết cho 2
=>2x3x4x...x101 chia hết cho 2
hay a chia hết cho 2
Do đó a+2 chia hết cho 2
Mà a+2>2
nên a+2 là hợp số
(mấy câu kia tương tự bn tự làm nha)
Đặt a=2.3.4.5.....101
+) xét 100 STN liên tiếp như sau:
a+2,a+3,...a+101
Vì chia hết cho 2=> 2.3....101 chia hết cho 2. Hay a chia hết cho 2.
Do đó a+2 chia hết cho 2. (*)
Mà a+2 >2 (**)
Từ (*)(**) => a là hợp số (đpcm)
Xét 99 số tự nhiên liên tiếp:
100! + 2;100! + 3;100!+4;...;100!+100
Tất cả các số đó đều là hợp số
nguyễn trường giang gần đúng rồi, bạn xem ở câu hỏi tương tự chứ gì nhưng nó khác ở đây.
Với lại không gần ghi A = 1*2*3....*99 đâu, nếu muốn thế chỉ cần ghi 99! (giai thừa) là được rồi !
Với số tự nhiên \(n\ge2\) bất kì, gọi \(N=1.2.3...n\left(n+1\right)\)
Xét các số \(N+2,N+3,...,N+n+1\), ta thấy:
\(N+2=1.2.3...n\left(n+1\right)+2⋮2\) nên \(N+2\) là hợp số.
\(N+3=1.2.3...n\left(n+1\right)+3⋮3\) nên \(N+3\) là hợp số.
...
\(N+n+1=1.2.3...n\left(n+1\right)+n+1⋮n+1\) nên \(N+n+1\) là hợp số.
Vậy \(N+i\) là hợp số với mọi \(2\le i\le n+1\). Có tất cả \(n\) số \(N+i\), suy ra đpcm.
Xét dãy các số: (�+1)!+2,(�+1)!+3,...,(�+1)!+�+1(n+1)!+2,(n+1)!+3,...,(n+1)!+n+1.
Có (�+1)!+�⋮�(n+1)!+k⋮kmà (�+1)!+�>�(n+1)!+k>knên số đó là hợp số.
=>Vậy dãy số trên gồm toàn hợp số.