Cho tam giác ABC có AB = AC, trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho AM = AN. Gọi H là trung điểm của BC. Chứng minh : ?ABH = ?ACH. Gọi E là giao điểm của AH và NM. Chứng minh : ?AME = ?ANE Chứng minh : MM // BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
hay \(\widehat{ABH}=\widehat{ACH}\)
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAE}=\widehat{NAE}\)
Xét ΔAME và ΔANE có
AM=AN(gt)
\(\widehat{MAE}=\widehat{NAE}\)(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên \(\widehat{AEM}=\widehat{AEN}\)(hai góc tương ứng)
mà \(\widehat{AEM}+\widehat{AEN}=180^0\)(hai góc so le trong)
nên \(\widehat{AEM}=\widehat{AEN}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a, Xét tam giác ABH và tam giác ACH ta có :
AB = AC ( gt )
AM = AN ( gt )
AH _ chung
=> tam giác ABH = tam giác ACH ( c.c.c )
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
=>ΔABH=ΔACH
b: ΔABC cân tại A có AH là đường trung tuyến
nên AH là phân giác của góc BAC và AH vuông góc BC
Xét ΔAME và ΔANE có
AM=AN
góc MAE=góc NAE
AE chung
=>ΔAME=ΔANE
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a: XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
XétΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{ABH}=\widehat{ACH}\)
a) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Suy ra: ˆABC=ˆACB(hai góc ở đáy)
hay ˆABH=ˆACH
b) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔABH=ΔACH(c-c-c)
Suy ra: ˆBAH=ˆCAH(hai góc tương ứng)
hay ˆMAE=ˆNAE
Xét ΔAME và ΔANE có
AM=AN(gt)
ˆMAE=ˆNAE(cmt)
AE chung
Do đó: ΔAME=ΔANE(c-g-c)
c) Ta có: ΔAME=ΔANE(cmt)
nên ˆAEM=ˆAEN(hai góc tương ứng)
mà ˆAEM+ˆAEN=1800(hai góc so le trong)
nên ˆAEM=ˆAEN=18002=900
Suy ra: AH⊥MN tại E(1)
Ta có: ΔABH=ΔACH(cmt)
nên ˆAHB=ˆAHCAHB^=AHC^(hai góc tương ứng)
mà ˆAHB+ˆAHC=1800(hai góc kề bù)
nên ˆAHB=ˆAHC=18002=900
Suy ra: AH⊥BC tại H(2)
Từ (1) và (2) suy ra MN//BC(Đpcm)
a) Xét \(\Delta ABH,\Delta ACH\) có:
\(AB=AC\) (Tam giác ABC cân tại A)
\(BH=CH\) (H là trung điểm của BC)
\(AH:Chung\)
=> \(\Delta ABH=\Delta ACH\left(c.c.c\right)\)
b) Xét \(\Delta AMN\) có :
\(AM=AN\left(gt\right)\)
=> \(\Delta AMN\) cân tại A
=> \(\widehat{AMN}=\widehat{ANM}\) (tính chất tam giác cân)
Xét \(\Delta AME,\Delta ANE\) có :
\(AM=AN\) (gt)
\(\widehat{AME}=\widehat{ANE}\) (\(\widehat{AMN}=\widehat{ANM}\))
\(AE:Chung\)
=> \(\Delta AME=\Delta ANE\left(c.g.c\right)\)
c) Xét \(\Delta AMN\) cân tại A có :
\(\widehat{AMN}=\widehat{ANM}=\dfrac{180^{^O}-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{AMN}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> \(MN//BC\left(đpcm\right)\)
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
Dấu ? định nghĩa là gì vậy bạn?
là góc ạ