K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

hình như có dấu + giữa 2 phân số

12 tháng 7 2017

Đúng rồi Thắng , bài này đúng ra phải là \(A=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(A=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)

Áp dụng BĐT Cauchy, ta có: 

\(x^4+8xy^3=x^4+8.xy.y^2\le x^4+4\left(x^2y^2+y^4\right)=\left(x^2+2y^2\right)^2\)

\(\Rightarrow\frac{x^2}{\sqrt{x^3+8xy^3}}\ge\frac{x^2}{x^2+2y^2}\)

\(\sqrt{y\left(y^3+\left(x+y\right)^3\right)}=\sqrt{\left(xy+2y^2\right)\left(x^2+y^2+xy\right)}\le\frac{x^2+3y^2+2xy}{2}=\frac{2y^2+\left(x+y\right)^2}{2}\)

\(\le\frac{2y^2+2\left(x^2+y^2\right)}{2}=x^2+2y^2\)

\(\Rightarrow A\ge\frac{x^2}{x^2+2y^2}+\frac{2y^2}{x^2+2y^2}=1\)

Vậy minA = 1 tại x = y > 0

15 tháng 9 2017

ta có ĐK là x>=0

ta có \(4\sqrt{x}\ge0;x+2\sqrt{x}+1>0\Rightarrow\) \(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\ge0\)

dấu = xảy ra <=> x= 0,

27 tháng 4 2018

1) Áp dụng BĐT bunhia, ta có 

\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)

Dấu = xảy ra <=> a=b=c=1/3

A = 2 + 3\(\sqrt[]{x^2+1}\) 

Ta có: x2 \(\ge\) 0, \(\forall\) x => x\(\ge\) 1, \(\forall\) x

=> \(\sqrt[]{x^2+1}\) \(\ge\) \(\sqrt[]{1}\) 

=> 3\(\sqrt[]{x^2+1}\) \(\ge\) 3

=> 2 + 3\(\sqrt[]{x^2+1}\) \(\ge\) 5

Vậy A đạt GTNN khi bằng 5

Dấu "=" xảy ra khi x = 0

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)