K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 4

loading...

Lấy \(A_1\) đối xứng A qua Ox và \(A_2\) đối xứng A qua Oy

\(\Rightarrow Ox\) là trung trực của \(AA_1\) và Oy là trung trực của \(AA_2\)

Do B thuộc Ox \(\Rightarrow AB=A_1B\)

Do C thuộc Oy \(\Rightarrow AC=A_2C\)

\(\Rightarrow AB+AC+BC=A_1B+BC+A_2C\ge A_1A_2\)

Dấu "=" xảy ra khi \(A_1;B;C;A_2\) thẳng hàng hay \(B;C\) lần lượt là giao điểm của \(A_1A_2\) với Ox và Oy

2 tháng 4 2018

18 tháng 8 2019

+ Xét tam giác bất kì ABC có Bvà C lần lượt nằm trong hai tia Ox và Oy 

+ Gọi A' và A''  là các điểm đối xứng với điểm A  lần lượt qua các đường thẳng Ox và Oy . 

Ta có \(AB=A'B\)  và \(AC=A'CC\)( do các tam giác \(ABA'\)và tam giác \(ACA''\)là tam giác cân).

+ Gọi 2p là chu vi của tam giác ABC thì có :

2p = \(AB+BC+CA=A'B+BC+CA''\ge A'A''\)

Dấu'' bằng '' xảy ra khi 4 điểm \(A'B,C,A''\)thẳng hàng . 

Nên để chu vi tam giác ABC bé nhất thì phải lấy B và lần lượt là giao điểm của đoạn thẳng \(A'A''\)với hai tia Ox và Oy ( các giao điểm đó tồn tại vì góc xOy nhọn ) 

Chúc bạn học tốt !!!

31 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng điểm D đối xứng với A qua Ox

- Dựng điểm E đối xứng với A qua Oy

Nối DE cắt Ox tại B, Oy tại C

Tam giác ABC là tam giác có chu vi nhỏ nhất

Vì ∠ (xOy) < 90 0  nên DE luôn cắt Ox và Oy do đó  ∆ ABC luôn dựng được.

Chứng minh:

Chu vi  ∆ ABC bằng AB + BC + AC

Vì D đối xứng với A qua Ox nên Ox là trung trực của AD

⇒ AB = BD (tính chất đường trung trực)

E đối xứng với A qua Oy nên Oy là trung trực của AE

⇒ AC = CE (tính chất đường trung trực)

Suy ra: AB + BC + AC = BD + BC + BE = DE (1)

Lấy B' bất kì trên Ox, C' bất kì trên tia Oy. Nối C'E, C'A, B'A, B'D.

Ta có: B'A = B'D và C'A = C'E (tính chất đường trung trực)

Chu vi  ∆ AB'C' bằng AB'+ AC’ + B'C'= B'D+C’E+ B'C' (2)

Vì DE ≤ B'D + C’E+ B'C' (dấu bằng xảy ra khi B' trùng B, C' trùng C) nên chu vi của  ∆ ABC ≤ chu vi của ∆ A'B'C'

Vậy  ∆ ABC có chu vi bé nhất.

29 tháng 6 2017

Đối xứng trục

Lấy M, N lần lượt là điểm đối xứng với A qua Ox và Oy

Ta có: P(ABC)=AB+AC+BC=BM+BC+CN≥MNP(ABC)=AB+AC+BC=BM+BC+CN≥MN
Dấu bằng xảy ra khi M,B,C,N thẳng hàng
Vậy chu vi tam giác ABC nhỏ nhất khi B,C thuộc MN

24 tháng 8 2017

x^3-19x-30 
=x^3-25x+6x-30 
=x(x^2-25)+6(x-5) 
=x(x+5)(x-5)+6(x-5) 
=(x-5)(x^2+5x+6) 
=(x-5)(x^2+2x+3x+6) 
=(x-5)[x(x+2)+3(x+2)] 
=(x-5)(x+2)(x+3)