Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào các biến:
a) (x+2)^2 -2(x+2)(x-8)+(x-8)^2
b) (x+y-z-t)^2-(z+t-x-y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2\)
\(=[\left(x+2\right)-\left(x-8\right)]^2=36\Rightarrow dpcm\)
\(\left(x+y-z-t\right)^2-\left(z+t-x-y\right)^2\)
\(=\left(x+y-z-t+z+t-x-y\right)\left(x+y-z-t-z-t+x+y\right)=0\Rightarrow dpcm\)
\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2-2xy+y^2+x^2-2xz+z^2+3x^2+3y^2+3z^2\)
A phụ thuộc vào biến mà
Ta có \(\left(x+2\right)^2-2.\left(x+2\right).\left(x-8\right)+\left(x-8\right)^2\)
\(=\left[\left(x+2\right)-\left(x-8\right)\right]^2\)
\(=\left(x+2-x+8\right)^2\)
\(=10^2=100\)
Vậy giá trị không phụ thuốc vào biến
\(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=\left[\left(x+2\right)-\left(x-8\right)\right]^2\)
\(=\left(x+2-x+8\right)^2\)
\(=10^2=100\)
Vậy biểu thức trên không phụ thuộc vào giá trị của biến
Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
1.a) (x+2)2-2(x+2)(x-8)+(x-8)2=[ (x+2)-(x-8) ]2=(x+2-x+8)2=102=100
b) (x+y-z-t)2-(z+t-x-y)2=(x+y-z-t+z+t-x-y)(x+y-z-t-z-t+x+y)
=0.-2(z+t-x-y)=0
2. n3-n=n(n2-1)=n(n-1)(n+1)
Ta n(n-1)(n+1) là tích ba số nguyên tự nhiên
=>n(n-1)(n+1) chia hết cho 2 và 3
=>n(n-1)(n+1) chia hết cho 6
a) (x+2)^2 -2(x+2)(x-8)+(x-8)^2
= ((x+2)-(x-8))^2 (hang dang thuc)
=(x+2-x+8)^2
=(10)^2
=100
biểu thức trên ko phụ thuộc vào biến vi kết quả ko có biến
b, (x+y-z-t)^2-(z+t-x-y)^2
=((x+y-z-t)+(z+t-x-y))*((x+y-z-t)-(z+t-x-y))
= 0*((x+y-z-t)-(z+t-x-y))
=0
biểu thức trên ko phụ thuộc vào biến vi kết quả ko có biến