K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4

Từ giả thiết:

\(2024abc\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge\dfrac{3^3}{2024^3}\)

Lại có:  

\(2024abc\ge a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\ge\dfrac{1}{3}\left(a+b+c\right).3\sqrt[3]{abc}\ge a+b+c.\sqrt[3]{\dfrac{3^3}{2024^3}}\)

\(\Rightarrow2024abc\ge\dfrac{3}{2024}\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a+b+c}{abc}\le\dfrac{2024^2}{3}\)

Từ đó:

\(Q=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)

\(Q\le\dfrac{a}{2\sqrt{a^2.bc}}+\dfrac{b}{2\sqrt{b^2.ca}}+\dfrac{c}{2\sqrt{c^2.ab}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}+\dfrac{1}{\sqrt{ab}}\right)\)

\(Q\le\dfrac{1}{2}\left(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{abc}}\right)\le\dfrac{\sqrt{3\left(a+b+c\right)}}{2\sqrt{abc}}=\dfrac{\sqrt{3}}{2}.\sqrt{\dfrac{a+b+c}{abc}}\le\dfrac{\sqrt{3}}{2}.\sqrt{\dfrac{2024^2}{3}}=1012\)

\(Q_{max}=1012\) khi \(a=b=c=\dfrac{3}{2024}\)

4 tháng 6 2018

Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)

Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)

\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)

Tương tự cộng lại suy ra \(VT\le1\)

Dấu = xảy ra khi a=b=c=1

4 tháng 6 2018

Mỉnh cảm ơn nha 

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?

11 tháng 10 2020

Áp dụng bđt : \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(1)

CM bđt đúng: Từ (1) => 3xy + 3yz + 3xz \(\le\)x2 + y2 + z2 + 2xy + 2xz + 2yz

<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz \(\ge\)0

<=> (x - y)2 + (y - z)2 + (x - z)2 \(\ge\)0 (luôn đúng với mọi x;y;z)

Khi đó: P = \(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy MaxP = 3 khi a = b = c = 1

11 tháng 10 2020

Ta có đánh giá quen thuộc sau: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*

Áp dụng, ta được: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

Đẳng thức xảy ra khi a = b = c = 1

5 tháng 1 2023

- Theo BĐT Cauchy ta có:

\(\sqrt{a.1}\le\dfrac{a+1}{2}\)

\(\sqrt{b.1}\le\dfrac{b+1}{2}\)

\(\sqrt{c.1}\le\dfrac{c+1}{2}\)

\(\sqrt{ab}\le\dfrac{a+b}{2}\)

\(\sqrt{bc}\le\dfrac{b+c}{2}\)

\(\sqrt{ca}\le\dfrac{c+a}{2}\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3.3+3}{2}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Mà ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6\)

\(\Rightarrow a=b=c=1\)

\(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2023}}=1\)

5 tháng 1 2023

chờ bạn trả lời xong thì tui nghĩ ra hết chục bài thế rùi

31 tháng 10 2018

\(A=\frac{ab}{a+c+b+c}+\frac{bc}{a+b+a+c}+\frac{ca}{a+b+b+c}\)

\(\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Nên max A là \(\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)

12 tháng 1 2022

cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\)  nha

NV
14 tháng 1 2022

\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tương tự:

\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)