K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2024

A = \(\dfrac{2023\times2024+1012}{2024\times2024-1012}\)

A = \(\dfrac{2023\times2024+1012}{2024\times\left(2023+1\right)-2012}\)

A = \(\dfrac{2023\times2024+1012}{2024\times2023+2024-1012}\)

A = \(\dfrac{2023\times2024+1012}{2024\times2023+1012}\)

A = 1

5 tháng 4 2024

2024×2023=40052

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

7 tháng 9 2023

kết quả là 1022 nhé bạn

 

9 tháng 1 2024

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1 2024

các bạn giúp mình với mình đang vội.

 

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5

 

1 tháng 1 2024

2024 x 89 + 12 x 2024 - 2024

= 2024 x 89 + 12 x 2024 - 2024 x 1

= 2024 x (89 + 12 - 1)

= 2024 x 100

= 202400

1 tháng 1 2024

2024 x 89 + 12 x 2024 - 2024

= 2024 x 89 + 12 x 2024 - 2024 x 1

= 2024 x (89 + 12 - 1)

= 2024 x 100

= 202400

1 tháng 1 2017

x=-2023 

k nhé bạ 

1 tháng 1 2017

x=-2023

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Đề không đầy đủ. Bạn coi lại.

9 tháng 2 2023

\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)

\(\Rightarrow2023x+4090506=2024-2024-20232023\)

\(\Rightarrow x+4090506=-2023\)

\(\Rightarrow2023x=-2023-4090506\)

\(\Rightarrow2023x=-4092529\)

\(\Rightarrow x=-2023\).

 

24 tháng 11 2024

1011

 

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ