Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nha bạn:
A=5.72+7.125+12.197+19.289+28.3911+39.401
=7−55.7+12−77.12+19−1212.19+28−1919.28+39−2828.39+40−3939.40=5.77−5+7.1212−7+12.1919−12+19.2828−19+28.3939−28+39.4040−39
=15−17+17−112+112−119+119−128+128−139+139−140=51−71+71−121+121−191+191−281+281−391+391−401
=15−140=740=
ta tách 2/5x7 = 2/5-2/7 tách những cái kia tương tự góp vào rồi tính
Đặt P= \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\) : \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
Có : \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)
= \(\dfrac{\left(2.5-9\right).5^{21}}{\left(5^2\right)^{10}}\)= \(\dfrac{\left(10-9\right).5^{21}}{5^{20}}\)=\(\dfrac{5^{21}}{5^{20}}\)= 5 (1)
Có: \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
= \(\dfrac{5.\left[7^{14}.\left(3.7-19\right)\right]}{\left[7^{15}.\left(3+7\right)\right]}\)=\(\dfrac{5.7^{14}.2}{7^{15}.10}\)=\(\dfrac{10.7^{14}}{7^{15}.10}\)=\(\dfrac{1}{7}\) (2)
Từ (1) và (2) suy ra:
A= 5:\(\dfrac{1}{7}\)=5.7=35
Vậy A=35 hay \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\):\(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)= 35
Câu 2:
\(B=\dfrac{5^{21}\cdot\left(2\cdot5-9\right)}{5^{20}}\cdot\dfrac{7^{15}\left(7+3\right)}{15\cdot7^{15}-95\cdot7^{14}}\)
\(=\dfrac{5\cdot1}{1}\cdot\dfrac{7^{15}\cdot10}{7^{14}\cdot\left(15\cdot7-95\right)}\)
\(=5\cdot\dfrac{7\cdot10}{105-95}=5\cdot7=35\)
a) \(\left(\dfrac{11}{12}+\dfrac{11}{12.23}+\dfrac{11}{23.34}+...+\dfrac{11}{89.100}\right)+x=\dfrac{5}{3}\)
\(\Rightarrow\left(\dfrac{11}{1.12}+\dfrac{11}{12.23}+\dfrac{11}{23.34}+...+\dfrac{11}{89.100}\right)+x=\dfrac{5}{3}\)
\(\Rightarrow\left(1-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{34}+...+\dfrac{1}{89}-\dfrac{1}{100}\right)+x=\dfrac{5}{3}\)
\(\Rightarrow1-\dfrac{1}{100}+x=\dfrac{5}{3}\)
\(\Rightarrow x=\dfrac{5}{3}-1+\dfrac{1}{100}\)
\(\Rightarrow x=\dfrac{500}{300}-\dfrac{300}{300}+\dfrac{3}{300}\)
\(\Rightarrow x=\dfrac{203}{300}\)
b) \(\left(\dfrac{5}{11.16}+\dfrac{5}{16.21}+...+\dfrac{5}{19.24}\right)-x+\dfrac{1}{3}=\dfrac{7}{3}\)
=>\(\left(\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+...+\dfrac{1}{19}-\dfrac{1}{24}\right)-x=\dfrac{7}{3}-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{11}-\dfrac{1}{24}-x=2\)
\(\Rightarrow-x=2-\dfrac{1}{11}+\dfrac{1}{24}\)
\(\Rightarrow-x=\dfrac{528}{264}-\dfrac{24}{264}+\dfrac{11}{264}\)
\(\Rightarrow x=\dfrac{515}{264}\)
c) Câu hỏi của Đàm Chu Hữu An - Toán lớp 6 - Học toán với OnlineMath
a) \(\dfrac{\left(-3\right)^7\cdot2^8}{6^7}\)
\(=\dfrac{-1\cdot3^7\cdot2^8}{\left(2\cdot3\right)^7}=\dfrac{-1\cdot3^7\cdot2^7\cdot2}{2^7\cdot3^7}=-1\cdot2=-2\)
b) \(\dfrac{-3\cdot7^4+7^3}{7^5\cdot6-7^3\cdot2}\)
\(=\dfrac{-3\cdot7\cdot7^3+7^3}{7^3\cdot7^2\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\left(-3\cdot7+1\right)}{7^3\left(7^2\cdot6-2\right)}=\dfrac{-3\cdot7+1}{7^2\cdot6-2}\)
\(=\dfrac{-21+1}{294-2}=\dfrac{-20}{290}=\dfrac{-2}{29}\)
b) \(\dfrac{5^3\cdot3^5}{5^3\cdot0,5+125\cdot2\cdot5}\)
\(=\dfrac{5^3\cdot3^5}{5^3\cdot0,5+5^3\cdot2\cdot5}=\dfrac{5^3\cdot3^5}{5^3\left(0,5+2\cdot5\right)}\)
\(=\dfrac{3^5}{0,5+2\cdot5}=\dfrac{243}{10,5}=\dfrac{162}{7}\)
\(K=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{85}-\dfrac{1}{89}\right)\)
\(=\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{89}\right)=\dfrac{5}{4}\cdot\dfrac{86}{267}=\dfrac{215}{534}\)
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)
\(e.\dfrac{7}{10}\cdot\dfrac{-3}{5}+\dfrac{7}{10}\cdot\dfrac{-2}{5}-\dfrac{3}{10}\)
\(=\dfrac{7}{10}\cdot\left[\left(\dfrac{-3}{5}\right)+\left(\dfrac{-2}{5}\right)\right]-\dfrac{3}{10}\)
\(=\dfrac{7}{10}\cdot1-\dfrac{3}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)
\(f.\dfrac{-3}{7}\cdot\dfrac{5}{9}+\dfrac{4}{9}\cdot\dfrac{-3}{7}+2\dfrac{3}{7}\)
\(=\dfrac{-3}{7}\cdot\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{17}{3}\)
\(=\dfrac{-3}{7}\cdot1+\dfrac{17}{3}=\dfrac{-9}{21}+\dfrac{119}{21}=\dfrac{110}{21}\)
\(g.\dfrac{5}{9}\cdot\dfrac{10}{17}+\dfrac{5}{9}\cdot\dfrac{9}{17}-\dfrac{5}{9}\cdot\dfrac{2}{17}\)
\(=\dfrac{5}{9}\cdot\left(\dfrac{10}{17}+\dfrac{9}{17}-\dfrac{2}{17}\right)\)
\(=\dfrac{5}{9}\cdot1=\dfrac{5}{9}\)
\(\dfrac{5}{3\cdot7}+\dfrac{5}{7\cdot11}+\dfrac{5}{11\cdot15}+...+\dfrac{5}{\left(4n-1\right)\left(4n+3\right)}\\ =\dfrac{5}{4}\cdot\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\\ =\dfrac{5}{4}\cdot\dfrac{4n}{12n+9}\\ =\dfrac{5n}{12n+9}\)
Mk thực sự nghĩ đề hình như bị sai hay sao ấy!
\(\dfrac{10}{3\cdot7}-\dfrac{5}{7\cdot12}-\dfrac{7}{12\cdot19}-\dfrac{5}{19\cdot24}\)
\(=\dfrac{10}{3\cdot7}-\left(\dfrac{1}{7}-\dfrac{1}{12}\right)-\left(\dfrac{1}{12}-\dfrac{1}{19}\right)-\left(\dfrac{1}{19}-\dfrac{1}{24}\right)\)
\(=\dfrac{10}{21}-\dfrac{1}{7}+\dfrac{1}{12}-\dfrac{1}{12}+\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{1}{24}\)
\(=\dfrac{10}{21}-\dfrac{3}{21}+\dfrac{1}{24}\)
\(=\dfrac{7}{21}+\dfrac{1}{24}=\dfrac{1}{3}+\dfrac{1}{24}=\dfrac{8}{24}+\dfrac{1}{24}=\dfrac{9}{24}=\dfrac{3}{8}\)