K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔABC cân tại A

mà AH là đường cao

nên AH là trung trực của BC

c: Xét tứ giác ABIC có

H là trung điểm chung của AI và BC

AI vuông góc bC

=>ABIC là hình thoi

=>IC//AB và IC=AB

=>CA=CI

=>góc CAH=góc CIH

10 tháng 8 2023

Tốt v a=))

3 tháng 4 2018

hình bạn tự vẽ nha

a)Vì tam giác ABC cân tại A

=> góc ABC=góc ACB

Xét tam giác ABH và tam giác ACH có

góc AHB= góc AHC(= 90 độ)

AB=AC(gỉa thiết)

góc ABC= góc ACB(chứng minh trên)

=> tam giác ABH = tam giác ACH(c/h-g/n) hoặc chứng minh theo trường hợp c/h-cgv cũng được

b)Xét tam giác ACH và tam giác DCH có

AH=DH(giả thiết)

góc AHC= góc DHC(= 90 độ)

cạnh HC chung

=>tam giác ACH = tam giác DCH(c.g.c)

=> AC=DC(2 cạnh tương ứng)

28 tháng 2 2021

em tự vẽ hình nha 

xét △AMB và △DMC có:

BM = MC

AM = MD

góc AMB = góc DMC  ( đối đỉnh )

=> △AMB = △DMC 

=> góc ABM = góc DCM và ở vị trí sole trong 

=> AB // CD 

ta có AB vuông góc với AC 

=> CD vuông góc với AC ( đpcm )

 

3 tháng 4 2018

a) Xét hai tam giác vuông ABH và ACH ta có

AB = AC (gt)

\(\widehat{ABC}=\widehat{ACB}\)(gt)

Do đó: \(\Delta ABH=\Delta ACH\left(ch-gn\right)\)

b) Xét hai tam giác vuông AHB và DHC ta có

HA = HD (gt)

\(\widehat{AHB}=\widehat{CHD}\left(đđ\right)\)

Do đó: \(\Delta AHB=\Delta DHC\left(ch-gn\right)\)

=> AB = DC (căp cạnh tương ứng)

Mà AB = AC (gt) nên AC = DC

c) Ta có: \(\Delta AHB=\Delta DHC\)(câu a)

=> \(\widehat{BAG}=\widehat{GAC}\)(căp góc tương ứng)

Xét hai tam giác ABG và ACG ta có

AB = AC (gt)

\(\widehat{BAG}=\widehat{GAC}\left(cmt\right)\)

AG là cạnh chung

Do đó: \(\Delta ABG=\Delta ACG\left(c-g-c\right)\)

AE = AF (cặp cạnh tương ứng)

Ta có AE = \(\frac{1}{2}\)AB mà AB = AE và AE = AF

nên AF = \(\frac{1}{2}\)AC hay đường thẳng BG đi qua trung điểm F của AC

tk mk nhoa!!! ~3~

3 tháng 4 2018

câu d nữa bạn à 

thanks nha 

cm giúp mình

29 tháng 5 2021

a,xét tam giác ACH và tam giác DCH có:

HA=HD(gt)

góc CHA= góc CHD(vì CH\(\perp\)AD)

HC chung => tam giác ACH=tam giác DCH(c.g.c)

tam giác ADC có CH vừa là trung tuyến đồng thời là đường cao=>tam giác ADC cân tại C

b,xét tam giác AHB và tam giác DHE có:

góc BHA= góc DHE( đối đỉnh)

HA=HD(cmt), HB=HE(gT)=>tam giác AHB= tam giác DHE(c.g.c)

gọi giao điểm DE với AC là K

vì tam giác AHB= tam giác DHE(cmt)=>góc HED= góc HBA

mà góc HED=góc CEK( đối đỉnh)=> góc HBA=góc CEK

lại có tam giác ABC vuông tại A=> góc HBA+ góc ECK=90 độ=> góc CEK+góc ECK=90 độ=>DK\(\perp AC\)

hay DE \(\perp AC\) mà CE\(\perp AD\)(tại H)=>E là trực tâm tam giác ADC

ăn cơm đã ý c tí mik làm sau

29 tháng 5 2021

help mình

12 tháng 6 2020

VÌ \(\Delta ABC\)CÂN TẠI A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

A) XÉT \(\Delta ABH\)\(\Delta ACH\)

\(AB=AC\left(CMT\right)\)

\(\widehat{B}=\widehat{C}\left(CMT\right)\)

\(\widehat{AHB}=\widehat{AHC}=90^o\)

=>\(\Delta ABH\)=\(\Delta ACH\)(ch-cgv)

b) vì\(\Delta ABH\)=\(\Delta ACH\)(cmt)

=> BH=CH ( HAI CẠNH TƯƠNG ỨNG)

=> AH LÀ TRUNG TUYẾN CỦA  \(\Delta ABC\)(ĐPCM)

C) TA CÓ \(\widehat{ABH}+\widehat{ABD}=180^o\left(kb\right)\)

                 \(\widehat{ACH}+\widehat{ACE}=180^o\left(kb\right)\)

MÀ \(\widehat{ABH}=\widehat{ACH}\left(CMT\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

XÉT \(\Delta ABD\)\(\Delta ACE\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ABD}=\widehat{ACE}\left(CMT\right)\)

\(DB=CE\left(GT\right)\)

=>\(\Delta ABD\)=\(\Delta ACE\)(C-G-C)

=>AD=AE

=> \(\Delta ADE\)CÂN TẠI A

D)TỪ CHỨNG MINH TRÊN T DỄ DÀNG CM ĐƯỢC \(\Delta HDI=\Delta HEI\)

\(\Rightarrow\widehat{DHI}=\widehat{EHI}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{DHI}=\widehat{EHI}=\frac{180^o}{2}=90^o\)

ta lại có \(\widehat{AHD}+\widehat{DHI}=\widehat{AHI}\)

THAY \(90^o+90^o=\widehat{AHI}\)

\(\Rightarrow\widehat{AHI}=180^o\)

=> \(\widehat{AHD}\)\(\widehat{DHI}\)KỀ BÙ

=> BA ĐIỂM A,H,I THẲNG HÀNG