Tìm min C=x2-10x
Tìm max C=6x-x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = y^2 - 4y + 9 = y^2 - 4y + 4 + 5
= ( y - 2 )^2 + 5 >= 5
Dấu ''='' xảy ra khi y = 2
Vậy GTNN A là 5 khi y = 2
B = x^2 - x + 1 = x^2 - x + 1/4 + 3/4 = ( x - 1/2 )^2 + 3/4 >= 3/4
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN B là 3/4 khi x = 1/2
C = 2x^2 - 6x = 2 ( x^2 - 3x + 9 / 4 - 9/4 )
= 2 ( x - 3/2 )^2 - 9/2 >= -9/2
Dấu ''='' xảy ra khi x = 3/2
Vậy GTNN C là -9/2 khi x = 3/2
\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)
\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)
\(\Rightarrow x^2+y^2\le8\)
\(C_{max}=8\) khi \(x=y=\pm2\)
\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)
\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)
\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)
`#3107.101107`
a)
`x^2 + 6x + 10`
`= (x^2 + 2*x*3 + 3^2) + 1`
`= (x + 3)^2 + 1`
Vì `(x + 3)^2 \ge 0` `AA` `x`
`=> (x + 3)^2 + 1 \ge 1` `AA` `x`
Vậy, GTNN của bt là 1 khi `(x + 3)^2 = 0`
`<=> x + 3 = 0`
`<=> x = -3`
b)
`4x^2 - 4x + 5`
`= [(2x)^2 - 2*2x*1 + 1^2] + 4`
`= (2x - 1)^2 + 4`
Vì `(2x - 1)^2 \ge 0` `AA` `x`
`=> (2x - 1)^2 + 4 \ge 4` `AA` `x`
Vậy, GTNN của bt là `4` khi `(2x - 1)^2 = 0`
`<=> 2x - 1 = 0`
`<=> 2x = 1`
`<=> x = 1/2`
c)
`x^2 - 3x + 1`
`= (x^2 - 2*x*3/2 + 9/4) - 5/4`
`= (x - 3/2)^2 - 5/4`
Vì `(x - 3/2)^2 \ge 0` `AA` `x`
`=> (x - 3/2)^2 - 5/4 \ge -5/4` `AA` `x`
Vậy, GTNN của bt là `-5/4` khi `(x - 3/2)^2 = 0`
`<=> x - 3/2 = 0`
`<=> x = 3/2`
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)
\(\Rightarrow M\le9\)
\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)
\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)
\(\Rightarrow M\ge1\)
\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)
Không có max
`a)sqrt{x^2-2x+5}`
`=sqrt{x^2-2x+1+4}`
`=sqrt{(x-1)^2+4}`
Vì `(x-1)^2>=0`
`=>(x-1)^2+4>=4`
`=>sqrt{(x-1)^2+4}>=sqrt4=2`
Dấu "=" xảy ra khi `x=1.`
`b)2+sqrt{x^2-4x+5}`
`=2+sqrt{x^2-4x+4+1}`
`=2+sqrt{(x-2)^2+1}`
Vì `(x-2)^2>=0`
`=>(x-2)^2+1>=1`
`=>sqrt{(x-2)^2+1}>=1`
`=>sqrt{(x-2)^2+1}+2>=3`
Dấu "=" xảy ra khi `x=2`
Ta có : C = x2 - 10x
= x2 - 10x + 25 - 25
C = (x - 5)2 - 25
Vì \(\left(x-5\right)^2\ge0\forall x\in R\)
Nên : \(C=\left(x-5\right)^2-25\ge-25\forall x\in R\)
Vậy \(C_{min}=-25\) khi x - 5 = 0 => x = 5
Ta có : \(C=6x-x^2\)
\(=-\left(x^2-6x\right)\)
\(=-\left(x^2-6x+9-9\right)\)
\(=-\left(x^2-6x+9\right)+9\)( chuyển -9 ra ngoặc thành 9 )
\(C=-\left(x-3\right)^2+9\)
Vì \(-\left(x-3\right)^2\le0\forall x\in R\)
Nên : \(C=-\left(x-3\right)^2+9\le9\forall x\in R\)
Vậy \(C_{max}=9\) khi x - 3 = 0 => x = 3 .