K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(-3\right)=\left(-3\right)\left(-3-2\right)-2\left(-3-2\right)\)

\(=-3\cdot\left(-5\right)-2\cdot\left(-5\right)\)

\(=15+10=25\)

b: \(f\left(x\right)=x\left(x-2\right)-2\left(x-2\right)\)

\(=\left(x-2\right)\left(x-2\right)\)

\(=\left(x-2\right)^2>=0\forall x\)

29 tháng 11 2023

Bài 4:

\(f\left(5\right)-f\left(4\right)=2019\)

=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)

=>\(61a+9b+21c=2019\)

\(f\left(7\right)-f\left(2\right)\)

\(=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c\)

\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số

27 tháng 3 2016

 x=0 x=1

7 tháng 4 2016

a, f(x) = (2x4 - x4) + (5x3 - x- 4x3) + ( -x2 + 3x2) + 1

f(x) = x4 + 2x2 +1

b, f(1) = 14 + 2.12 + 1 = 1 + 2 + 1= 4

f(-1) = (-1)4 + 2.(-1)2 + 1 = 1 + 2 +1 =4

c,Có x4 >= 0      Vx  

2x2 >= 0         Vx

=> x4 + 2x2 + 1 >= 1 > 0 

=> f(x) ko có nghiệm

3 tháng 5 2018

thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong

3 tháng 5 2018

a)

Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)

                  \(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)

                    \(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

                     \(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)

                       \(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

                         \(=-x+1\)

- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:

   \(f\left(2018\right)=-2018+1=-2017\)

Vậy \(f\left(2018\right)=-2017\)

31 tháng 7 2016

Bài 3: 

\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\) 

\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\) 

\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\) 

Thay x = 3 vào đa thức, ta có:

\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\) 

\(f\left(3\right)=240-28+27=239\)

Vậy đa thức trên bằng 239 tại x = 3

Thay x = -3 vào đa thức. ta có:

\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)

\(f\left(-3\right)=-240+28+27=-185\)

31 tháng 7 2016

Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)

\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)

\(f\left(x\right)=2x^6+x^2+3x^4\)

Thay x=1 vào đa thức, ta có:

\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)

Đa thức trên bằng 6 tại x =1

Thay x = - 1 vào đa thức, ta có:

\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)

Đa thức trên có nghiệm = 0