giup em 2 bai nay em cam on a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm ngắn gọn: \(5=\dfrac{5\left(x-1\right)}{x-1}=\dfrac{5x-5}{x-1}=\dfrac{5x+5-10}{x-1}\)
Do đó chọn \(f\left(x\right)=5x+5\) thế vào nhanh chóng tính ra kết quả giới hạn
Còn cách khác phức tạp hơn (có thể sử dụng cho tự luận):
Do \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) hữu hạn nên \(f\left(x\right)-10=0\) có nghiệm \(x=1\)
\(\Rightarrow f\left(1\right)-10=0\Rightarrow f\left(1\right)=10\)
Do đó:
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-10\right]\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}.\dfrac{\sqrt{x}+1}{\sqrt{4f\left(x\right)+9}+3}=5.\dfrac{1+1}{\sqrt{4f\left(1\right)+9}+3}=5.\dfrac{2}{\sqrt{4.10+9}+3}=...\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{40.43}+\frac{1}{43.46}\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{43}-\frac{1}{46}\right)\)
\(=3.\left(1-\frac{1}{46}\right)\)
\(=3.\frac{45}{46}\)
\(=\frac{135}{46}\)
~Học tốt~
a, <=> 2,5 : 4x = 2,5
<=> 4x = 2,5 : 2,5 = 1
<=> x=1 : 4 = 1/4
b, <=> 1/5.x:3 = 8/3
<=> 1/5.x = 8/3 . 3 = 8
<=> x = 8 : 1/5 = 40
\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)
\(=\frac{x^3-2x^2+x^2-2x+x-2}{x^5-2x^4-x^4+2x^3+2x^3-4x^2-x^2+2x+x-2}\)
\(=\frac{\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)}{\left(x^5-2x^4\right)-\left(x^4-2x^3\right)+\left(2x^3-4x^2\right)-\left(x^2-2x\right)+\left(x-2\right)}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}{x^4\left(x-2\right)-x^3\left(x-2\right)+2x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(x^4-x^3+2x^2-x+1\right)}=\frac{x^2+x+1}{x^4-x^3+2x^2-x+1}\)
ủa đây là lớp 6 rồii