abcdx4=dcba abcd=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dat tinh
abcdx9=dcba
a co the la 1 1bcdx9=dcb1
d la 9= viet 1,d=9 vi 9x9=81
1bc9x9=9cb1 Vay b =0,1
Với b= 0 thì 10c9x9=9c01
Vay c= 8
abc=108
Tìm các số chính phương \(\overline{abcd},\overline{dcba}\) biết \(\overline{dcba}⋮\overline{abcd}\)
: bạn có thể tìm thấy bài này trong 255 bài toán số học chọn lọc
nếu chưa có sách này bạn chịu khó chờ một chút, mình sẽ viết bài ngay
a,b,c,d là các chữ số
=> d<10
=> 0<a<3
mà 4 là số chẵn
=> dcba là số chẵn
=> a chẵn
=> a = 2
ta có 4. 2bcd = dcb2
=> d có thể nhận các giá trị 8 hoặc 9
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2
=> d = 8
ta có 4. 2bc8 = 8cb2
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2
<=> 60c - 390b = 30
<=> 2c - 13b = 1
<=> 13b + 1 = 2c
mà 2c < 20
=> 13b < 19
=> b < 2
2c là số chẵn => b lẻ
=> b = 1
=> c = 7
thử lại thấy thỏa mãn
vậy số cần tìm là 2178
a,b,c,d là các chữ số
=> d<10
=> 0<a<3
mà 4 là số chẵn
=> dcba là số chẵn
=> a chẵn
=> a = 2
ta có 4. 2bcd = dcb2
=> d có thể nhận các giá trị 8 hoặc 9
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2
=> d = 8
ta có 4. 2bc8 = 8cb2
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2
<=> 60c - 390b = 30
<=> 2c - 13b = 1
<=> 13b + 1 = 2c
mà 2c < 20
=> 13b < 19
=> b < 2
2c là số chẵn => b lẻ
=> b = 1
=> c = 7
thử lại thấy thỏa mãn
vậy số cần tìm là 2178
4.abcd =dcba\(\le9999=>abcd\le2499\)=> a=1 hoặc a=2
mà 4.abcd là số chẵn lên dcba là số chẵn => a=2
dcb2=4.2bcd>4.2000=8000 => d=8 hoặc 9
d=9 thì 4.2bc9 = 9bc2 (4.2bc9 phải có số tận cùng là 6 mà 9bc2 có tận cùng là 2 nên không phù hợp)
vậy d=8 => 4.2bc8=8cb2 <=>4.(2000+100b+10c+8)=8000+100b+10c+2 <=>300b+30c+30=0 (vô lý vì b;c\(\ge0\)
Để giải bài toán này, ta sẽ giải phương trình: ABCD x 4 = DCBA Ta biểu diễn số ABCD dưới dạng 1000A + 100B + 10C + D và số DCBA dưới dạng 1000D + 100C + 10B + A. Vậy phương trình trở thành: 1000A + 100B + 10C + D = 1000D + 100C + 10B + A Chuyển các thành phần về cùng một phía ta được: 999A - 90B - 90C + 999D = 0 999(A - D) - 90(B - C) = 0 Vì A, B, C, D là các chữ số từ 0 đến 9 nên ta có thể thử từng trường hợp để tìm ra kết quả. Dễ dàng thấy rằng A = 2, B = 1, C = 7, D = 8 thỏa mãn phương trình trên. Vậy số ABCD = 2178.