So sánh:
a) 1999/2001 và 12/11
b) 1/a-1 và 1/a+1(a>10)
Cứu mik với mik đang cần gấp lắmmmmmmmmmmm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
a) 12/17 và 7/153
=>12/17 = 108/153
=>108/153 > 7/153
Vậy 12/17 > 7/153
b) Vì : 1999/2001 < 1 và 12/11 > 1 nên 1999/2001 < 12/11
c) 13/60 và 27/100
13/60 < 15/60 = 1/4
27/100 > 25/100 = 1/4
vậy 13/60 < 27/100
d) Ta có: 1 - 13/27 = 14/27
1 - 27/41 = 14/41
Vì 14/27 > 14/41 nên 13/27 < 27/41
bài làm
a) 12/17 và 7/153
=>12/17 = 108/153
=>108/153 > 7/153
Vậy 12/17 > 7/153
b) Vì : 1999/2001 < 1 và 12/11 > 1 nên 1999/2001 < 12/11
c) 13/60 và 27/100
13/60 < 15/60 = 1/4
27/100 > 25/100 = 1/4
vậy 13/60 < 27/100
d) Ta có: 1 - 13/27 = 14/27
1 - 27/41 = 14/41
Vì 14/27 > 14/41 nên 13/27 < 27/41
1999/2001 < 12/11
vì 1999/2001 bé hơn 1 còn 12/11 thì lớn hơn 1
1/a-1 < 1/a+1 ( bạn cho ví dụ thì dễ hơn ạ )
a) Ta có: a = -1/8 = -9/72
b = 2/-9 = -2/9 = -16/72
Ta thấy: -9 > -16 => -9/72 > -16/72
hay a > b
Vậy a > b
b) Ta có: a = 12/15 = 4/5= 16/20
b = -( -3/4 ) = 3/4= 15/20
Ta thấy: 16 > 15 => 16/20 > 15/20
hay a > b
Vậy a > b
c) Ta có: a = -2/3 = -40/60
b = -0,65 = -13/20 = -39/60
Ta thấy: -40 < -39 => -40/60 < -39/60
hay a < b
Vậy a < b
d) Ta có: a = -21/3 = -7
b = -413% = -4,13
Ta thấy: -7 < -4,13
=> a < b
Vậy a < b
Chuk bn hok tốt!
a, S = 1 + 2 - 3 - 4 +5 +6 - 7 - 8 +..... +1998 -1999 -2000 +2001
=> S = (1-3)+(2-4)+(5-7)+(6-8)+...+(1997-1999)+... + 2001 ( có 1000 hiệu = -2 )
=> S = -2 x 1000 + 2001 = 1
b, S = 1 - 3 + 5 - 7 + 9 - .... - 1999 + 2001
=> S = (1-3)+(5-7)+(9-11)+....+(1997-1999) + 2001( có 500 hiệu = -2 )
=> S = -2 x 500 + 2001 = 1001
mình chỉ lmf dc 2 câu đầu thông cảm nha
Ta có \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1};1=1\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow\frac{10^{11}-1}{10^{12}-1}< \frac{10^{10}+1}{10^{11}+1}\)
Suy ra\(A< B\)
\(A=\frac{10^{11}-1}{10^{12}-1}\) => \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}\)
=> \(10A=1-\frac{9}{10^{12}-1}\)=> 10A < 1
\(B=\frac{10^{10}+1}{10^{11}+1}\) => \(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}\)
=> \(10B=1+\frac{9}{10^{11}+1}\)=> 10B > 1
=> 10B > 10A => B > A
ĐS: B > A
a) 1999/2001 < 2001/2001 = 1
1 = 11/11 < 12/11
Vậy 1999/2001 < 12/11
b) Do a > 10
a - 1 < a + 1
⇒ 1/(a - 1) > 1/(a + 1)
1999/2001<12/11
1/a-1 > 1/a+1