K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

a) A=3+32+33+34+35+36+....+328+329+330A=3+32+33+34+35+36+....+328+329+330

A=(3+32+33)+(34+35+36)+....+(328+329+330)⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

A=3.13+34.13+....+328.13⇔A=3.13+34.13+....+328.13

A=13(3+34+....+328)13(dpcm)⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330A=3+32+33+34+35+36+....+325+326+327+328+329+330

A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

A=3.364+....+325.364⇔A=3.364+....+325.364

A=364(3+35+310+....+325)⇔A=364(3+35+310+....+325)

A=52.7(3+35+310+....+325)52(dpcm)

 

 

27 tháng 7 2023

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9

    

 

 

      

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy

$3^2\vdots 9$

$3^3=3^2.3\vdots 9$

......

$3^{20}=3^2.3^{18}\vdots 9$

$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$

$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9

$\Rightarrow A$ không thể là số chính phương.

 

20 tháng 12 2022

\(A=1+3+3^2+3^3+...+3^{101}\)
\(=>3A=3+3^2+3^3+3^4+...+3^{102}\)
\(=>3A-A=\left(3+3^2+3^3+3^4+...+3^{102}\right)-\left(1+3+3^2+3^3+...+3^{101}\right)\)
\(=>2A=3^{102}-1\)
\(=>A=\dfrac{3^{102}-1}{2}\)

28 tháng 2 2017

22 tháng 6 2017

A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30

3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31

2A = 3A – A =  ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 )  –  ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )

2A =  3 31 - 1

A =  3 31 - 1 2

Ta có  3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243

với n ≥ 0 thì  3 4 n + 3 có chữ số tận cùng là 7.Vì  31 = 4.7 + 3 nên  3 31 có chữ số tận cùng là 7. Do đó  3 31 - 1 2  có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.

Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương

AH
Akai Haruma
Giáo viên
9 tháng 11 2023

Lời giải:

$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$

$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$

$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$

$=13+40(3^3+3^7+...+3^{87})$

$\Rightarrow A$ chia 5 dư 3

Do đó A không là scp.

9 tháng 11 2023

Ta có: 

\(A=1+3+3^2+3^3+...+3^{90}\)

\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)

\(3A=3+3^2+3^3+...+3^{91}\)

\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)

\(2A=3^{91}-1\)

\(A=\dfrac{3^{91}-1}{2}\)

Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương