K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2024

\(=3^3.3^{1996}+7.7^{1996}=3^3.\left(3^4\right)^{499}+7.\left(7^4\right)^{499}\)

Ta có

\(3^4\) có tận cùng là 1 => \(\left(3^4\right)^{499}\) có tận cùng là 1

=> \(3^3.\left(3^4\right)^{499}=27.\left(3^4\right)^{499}\) có tận cùng là 7

\(7^4\) có tận cùng là 1 => \(\left(7^4\right)^{499}\) có tận cùng là 1 

=> \(7.\left(7^4\right)^{499}\) có tận cùng là 1 =>

\(\Rightarrow3^{1999}-7^{1997}\) có tận cùng là 0 \(\Rightarrow3^{1999}-7^{1997}⋮5\)

13 tháng 11 2023

\(S_2=1+\left(-3\right)+5+\left(-7\right)+...+1997+\left(-1999\right)\)

\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)\)

\(S_2=\left(-2\right)+\left(-2\right)+...+\left(-2\right)\)

Số lượng số hạng là: \(\left(1999-1\right):2+1=1000\) (số hạng)

Số lượng cặp là: \(1000:2=500\) (cặp)

\(S_2=500\cdot\left(-2\right)\)

\(S_2=-1000\)

27 tháng 2 2020

Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)

\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)

\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)

\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)

\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)

\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)

\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)

Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)

=> x - 2000 = 0 

=> x = 2000

DD
6 tháng 2 2021

a) \(A=1+\left(-3\right)+5+\left(-7\right)+...+\left(-1999\right)+2001\)

Số số hạng của tổng trên là: \(\frac{2001-1}{2}+1=1001\).

\(A=\left[1+\left(-3\right)\right]+\left[5+\left(-7\right)\right]+...+\left[1997+\left(-1999\right)\right]+2001\)

\(A=-2.500+2001\)

\(A=1001\)

DD
6 tháng 2 2021

b) \(1+\left(-2\right)+\left(-3\right)+4+5+\left(-6\right)+\left(-7\right)+8+...+1997+\left(-1998\right)+\left(-1999\right)+2000\)

\(=\left\{\left[1+\left(-2\right)\right]+\left[\left(-3\right)+4\right]\right\}+...+\left\{\left[1997+\left(-1998\right)\right]+\left[\left(-1999\right)+2000\right]\right\}\)

\(=\left(-1+1\right)+\left(-1+1\right)+...+\left(-1+1\right)\)

\(=0+0+...+0=0\)

26 tháng 1 2018

ta có:

A=9999931999-5555571997

A=9999931996.9999933-5555571996.555557

A=(9999934)499 ..........7-(5555574)499.555557

A=.......1499...........7-.............1499.555557

A=.............7.................7

A=...........0 chia hêt cho 5

26 tháng 1 2018

Ta có:

+/ 9999931999=9999933.9999931996=9999933.(9999934)499=(....7).(....1)449 

=> 9999931999  có tận cùng là (...7)(....1)=....7

+/ 5555571997=555557.5555571996=555557.(5555574)499=(....7).(....1)449  

=> 5555571997  có tận cùng là (...7)(....1)=....7

=> 9999931999 - 5555571997  có tận cùng là (...7)-(....7)=....0 (Có tận cùng là 0)

=> A=9999931999 - 5555571997 có tận cùng là 0 => Chia hết cho 5

19 tháng 2 2020

ta có \(A=999993^{1999}-555557^{1997}\\ =\left(999993^{499}\right)^4.999993^3-\left(555557^{499}\right)^4.555557\\ =\left(...1\right)^4.\left(...7\right)-\left(...1\right)^4.\left(...7\right)\\ =\left(...1\right).\left(...7\right)-\left(...1\right).\left(...7\right)\\ =\left(...7\right)-\left(...7\right)=\left(...0\right)\)

vì A có tận cùng bằng 0 nên A chia hết cho 5 (đpcm)

11 tháng 8 2017

Ta có:

\(3^{1999}=3^{2000}:3\)

\(=\left(3^2\right)^{1000}:3\)

\(=9^{1000}:3\)

\(=.....:3=.....7\)

\(7^{1997}=7^{1996}.7\)

\(=\left(7^2\right)^{998}.7\)

\(=49^{998}.7\)

\(=.....1.7=.....7\)

Do đó: \(3^{1999}-7^{1997}=.....7-.....7=.....0\)

\(.....0\) chia hết cho \(5.\)

\(\Rightarrow3^{1999}-7^{1997}\) chia hết cho \(5.\) ( đpcm )

11 tháng 8 2017

ta có : 31999 - 71997 = (34)499 . 33 - (74)499 . 7
= (...1) . (...7) - (...1) . 7
= (...7) - (...7)
= (...0) chia hết cho 5
Vậy 31999 - 71997 chia hết cho 5

11 tháng 8 2017

a có : 3^{1999}=\left(3^4\right)^{499}.3^3=81^{499}.27\Rightarrow31999=(34)499.33=81499.27 số bị trừ có tận cùng là 7
7^{1997}=\left(7^4\right)^{499}.7=2041^{499}.7\Rightarrow71997=(74)499.7=2041499.7 số trừ có tận cùng là 7
Vì : $7-7=0\Rightarrow3^{1999}-7^{1997}⋮5$
Vậy ...