K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

p là số nguyên tố lớn hơn 3

=>(p=3k+1 hoặc p=3k+2 ) và p lẻ

p lẻ nên p=2a+1

\(p^2-1=\left(2a+1\right)^2-1=\left(2a+1-1\right)\left(2a+1+1\right)\)

\(=2a\left(2a+2\right)=4a\left(a+1\right)\)

Vì a;a+1 là hai số nguyên liên tiếp

nên \(a\left(a+1\right)⋮2\)

=>\(4a\left(a+1\right)⋮4\cdot2=8\)

=>\(p^2-1⋮8\)(4)

TH1: p=3k+1

\(p^2-1=\left(3k+1-1\right)\left(3k+1+1\right)\)

\(=3k\left(3k+2\right)⋮3\)(1)

TH2: p=3k+2

\(p^2-1=\left(3k+2\right)^2-1\)

\(=\left(3k+2+1\right)\left(3k+2-1\right)\)

\(=\left(3k+3\right)\left(3k+1\right)=3\left(k+1\right)\left(3k+1\right)⋮3\left(2\right)\)

Từ (1),(2) suy ra \(p^2-1⋮3\left(3\right)\)

 

Từ (3),(4) suy ra \(p^2-1⋮BCNN\left(3;8\right)\)

=>\(p^2-1⋮24\)

17 tháng 12 2023

nếu p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 3

p2 không chia hết cho 3 ⇒ p2 không chia hết cho 24; 

Vậy không tồn tại số nguyên tố nào thỏa mãn đề bài.

Vì p là số nguyên tố >3 nên p là số lẻ

 2 số p-2,p+1 là 2 số chẵn liên tiếp

(p-2)(p+1) ⋮ cho 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên

 p=3k+1 hoặc p=3k+2 (k thuộc N*)

+)Với p=3k+1  (p-2)(p+1)=3k(3k+2) ⋮ cho 3 (*)

+) Với p=3k+2  (p-2)(p+1)=(3k-1).3.(k+1) ⋮ 3 (**)

Từ (*) và (**) (p-2)(p+1) ⋮ 3 (2)

Vì (8;3)=1 → từ (1) và (2) => (p-2)(p+1) ⋮ 24

21 tháng 1 2018

Ta có:

12p2-1 

=>12p.12p - 1 

=> 144p - 1 

144p chia hết cho 24, 1 không chia hết cho 24.

=> 12p^2-1 \(⋮̸\)24

Vậy 12p2-1 \(⋮̸\)24

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ lẻ. Do đó $p=4k+1$ hoặc $p=4k+3$ với $k$ là số tự nhiên.

Nếu $p=4k+1$ thì $(p-1)(p+13)=4k(4k+14)=8k(2k+7)\vdots 8$

Nếu $p=4k+3$ thì $(p-1)(p+13)=(4k+2)(4k+16)=8(2k+1)(k+4)\vdots 8$

Vậy $(p-1)(p+13)\vdots 8$ với mọi $p$ là số nguyên tố lớn hơn $3$ (1)

Mặt khác:
Vì $p>3, p$ nguyên tố nên $p$ chia $p=3m+1$ hoặc $p=3m+2$ với $m$ tự nhiên.

Nếu $p=3m+1$ thì $p-1=3m\vdots 3\Rightarrow (p-1)(p+13)\vdots 3$

Nếu $p=3m+2$ thì $p+13=3m+15\vdots 3\Rightarrow (p-1)(p+13)\vdots 3$

Vậy $(p-1)(p+13)\vdots 3$ với mọi $p$ nguyên tố > 3 (2)

Từ $(1); (2)$ mà $(3,8)=1$ nên $(p-1)(p+13)\vdots 24$ (đpcm)

23 tháng 10 2016

rong các nhân vật Sơn Tinh , Thánh Gióng , Thạch sanh em thích nhân vật nào nhứt ! Vì SAO?

Nè ti k cần mấy người dạy đời nhé tui bị trừ điểm hay xóa nick là chuyện của tui

tui cần ấy người trả lời thui ai trả lời hay và nhanh tui k cho 3 cái nhé

tối nay hạn chót òi

2 tháng 12 2016

vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3

29 tháng 6 2016

Do p nguyên tố, p > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3

=> p2 chia 3 dư 1

=> p2 - 1 chia hết cho 3 (1)

Do p nguyên tố, p > 3 nên p lẻ => p2 lẻ

=> p2 chia 8 dư 1

=> p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => p2 - 1 chia hết cho 24

=> đpcm

Ủng hộ mk nha ^-^

29 tháng 4 2015

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

ko chắc lắm

14 tháng 4 2018

p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2. 
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1) 
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2) 
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3) 
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1) 
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4) 
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5) 
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.

22 tháng 11 2017

Ta có: A = n2 - 1 = (n - 1)(n + 1)

Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

- Nếu n = 3k + 1 thì:

A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3

- Nếu n = 3k + 2 thì:

A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3

Từ hai trường hợp trên ta có A \(⋮\) 3 (2)

Mà (8,3) = 1 (3)

Từ (1),(2),(3) => \(A⋮24\)