K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9: \(A=\dfrac{3^2}{10}+\dfrac{3^2}{40}+...+\dfrac{3^2}{340}\)

\(=3\left(\dfrac{3}{10}+\dfrac{3}{40}+...+\dfrac{3}{340}\right)\)

\(=3\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{17\cdot20}\right)\)

\(=3\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)

\(=3\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=3\cdot\dfrac{9}{20}=\dfrac{27}{20}\)

10: \(A=\dfrac{5^2}{1\cdot6}+\dfrac{5^2}{6\cdot11}+...+\dfrac{5^2}{26\cdot31}\)

\(=5\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{26\cdot31}\right)\)

\(=5\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{25}-\dfrac{1}{31}\right)\)

\(=5\left(1-\dfrac{1}{31}\right)=5\cdot\dfrac{30}{31}=\dfrac{150}{31}\)

11: \(A=\dfrac{6}{15}+\dfrac{6}{35}+\dfrac{6}{63}+\dfrac{6}{99}\)

\(=3\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\)

\(=3\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}\right)\)

\(=3\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)

\(=3\left(\dfrac{1}{3}-\dfrac{1}{11}\right)=3\cdot\dfrac{8}{33}=\dfrac{8}{11}\)

12: \(A=\dfrac{3}{3\cdot5}+\dfrac{3}{5\cdot7}+...+\dfrac{3}{49\cdot51}\)

\(=\dfrac{3}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)

\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{51}\right)=\dfrac{3}{2}\cdot\dfrac{16}{51}=\dfrac{8}{17}\)

13: \(A=\dfrac{1}{2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}\)

\(=1-\dfrac{1}{16}=\dfrac{15}{16}\)

14: \(A=\dfrac{1}{2}+\dfrac{2}{8}+\dfrac{3}{28}+\dfrac{4}{77}+\dfrac{5}{176}\)

\(=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}\)

loading...

15: \(A=\dfrac{3}{54}+\dfrac{5}{126}+\dfrac{7}{294}+\dfrac{8}{609}\)

\(=\dfrac{3}{6\cdot9}+\dfrac{5}{9\cdot14}+\dfrac{7}{14\cdot21}+\dfrac{8}{21\cdot29}\)

\(=\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{29}\)

\(=\dfrac{1}{6}-\dfrac{1}{29}=\dfrac{23}{174}\)

16: \(A=\dfrac{5}{24}+\dfrac{5}{104}+\dfrac{5}{234}+\dfrac{5}{414}\)

\(=\dfrac{5}{3\cdot8}+\dfrac{5}{8\cdot13}+\dfrac{5}{13\cdot18}+\dfrac{5}{18\cdot23}\)

\(=\dfrac{1}{3}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{23}\)

\(=\dfrac{1}{3}-\dfrac{1}{23}=\dfrac{20}{69}\)

17: \(A=\dfrac{\dfrac{3}{54}+\dfrac{5}{126}+\dfrac{7}{294}}{\dfrac{5}{24}+\dfrac{5}{104}+\dfrac{5}{234}}\)

\(=\dfrac{\dfrac{1}{6}-\dfrac{1}{21}}{\dfrac{1}{3}-\dfrac{1}{18}}=\dfrac{15}{126}:\dfrac{15}{54}=\dfrac{54}{126}=\dfrac{3}{7}\)

30 tháng 10 2021

Vì đg thẳng c vuông góc với đg thẳng b

Đg thăng c vuông góc với đg thẳng a

=》a//b

12 tháng 10 2021

a, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

b, Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2021a}{2021b}=\dfrac{2021a-c}{2021b-d}\)

c, Ta có \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2\)

Áp dụng t/c dtsbn:

\(\left(\dfrac{a}{b}\right)^2=\left(\dfrac{c}{d}\right)^2=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

12 tháng 10 2021

Anh ơi cho em hỏi dtsbn là gì ạ

12 tháng 10 2021

bn làm r mà.

16 tháng 11 2021

m, cf m fcmk

1 tháng 11 2021

Câu 20:

Ta có:  \(\widehat{A}-\widehat{B}=40^0\Rightarrow\widehat{B}=\widehat{A}-40^0\)

\(\widehat{A}=2\widehat{C}\Rightarrow\widehat{C}=\frac{\widehat{A}}{2}\)

Vì AB//CD (gt) \(\Rightarrow\widehat{A}+\widehat{D}=180^0\)(hai góc trong cùng phía)\(\Rightarrow\widehat{D}=180^0-\widehat{A}\)

Tứ giác ABCD \(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\Rightarrow\widehat{A}+\left(\widehat{A}-40^0\right)+\frac{\widehat{A}}{2}+\left(180^0-\widehat{A}\right)=360^0\)

Và đến đây bạn dễ dàng tìm được góc A và từ đó suy ra được góc D.

1 tháng 11 2021

Câu 29: Ta có: 

\(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\xz+x+z=15\end{cases}}\Leftrightarrow\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}\Leftrightarrow}\hept{\begin{cases}x\left(y+1\right)+\left(y+1\right)=4\\y\left(z+1\right)+\left(z+1\right)=9\\x\left(z+1\right)+\left(z+1\right)=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\\z+1=c\end{cases}}\)với a,b,c > 1, khi đó ta có 

\(\hept{\begin{cases}ab=4\\bc=9\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}abbc=4.9\\c=\frac{9}{b}\\ca=16\end{cases}}\Leftrightarrow\hept{\begin{cases}16b^2=36\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b^2=\frac{36}{16}=\frac{9}{4}\\c=\frac{9}{b}\\a=\frac{16}{c}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{3}{2}\\c=\frac{9}{\frac{3}{2}}=6\\a=\frac{16}{6}=\frac{8}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=a-1=\frac{8}{3}-1=\frac{5}{3}\\y=b-1=\frac{3}{2}-1=\frac{1}{2}\\z=c-1=6-1=5\end{cases}}\)

Vậy \(P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{10+3+30}{6}=\frac{43}{6}\)

20 tháng 8 2021

Bài 5:

A 1 2 3 4 B 1 C 1 D 1

Ta có : \(\widehat{A_1}+\widehat{A_3}=180^o\) (kề bù)

            \(100^o+\widehat{A_3}=180^o\)

            \(\widehat{A_3}=80^o\)

Ta có: \(\widehat{A_3}=\widehat{B_1}=80^o\)

            \(\widehat{A_3}\) và \(\widehat{B_1}\) ở vị trí đồng vị 

\(\Rightarrow AC//BD\)

\(\Rightarrow\widehat{C}_1=\widehat{D_1}=135^o\) (đồng vị)

\(x=135^o\)

b)

G H B K 1 1 1 1

Ta có: \(\widehat{G_1}+\widehat{B_1}=180^o\left(120^o+60^o=180^o\right)\)

               \(\widehat{G_1}\) và \(\widehat{B_1}\) ở vị trí trong cùng phía

\(\Rightarrow QH//BK\)

\(\Rightarrow\widehat{H_1}=\widehat{K_1}=90^o\)(so le)

\(x=90^o\)

 

2 tháng 3 2022

2 tháng 3 2022

13 tháng 12 2020

11 c)

\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)

13 tháng 12 2020

12 a)  Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)

áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm ) 

b)  áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)

Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)

\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)