K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...\left(1-\frac{2010}{2010}\right)\left(1-\frac{2011}{2010}\right)\)

\(=\left(1-\frac{1}{2010}\right)\left(1-\frac{2}{2010}\right)...0\left(1-\frac{2011}{2010}\right)\)

\(=0\)

3 tháng 2 2017

kobiet

12 tháng 1 2017

* Xét tử số của K, ta nhận thấy:

Số 1 được lấy 2012 lần

Số 2 được lấy 2011 lần

Số 3 được lấy 2010 lần

........

Số 2011 được lấy 2 lần

Số 2012 được lấy 1 lần
 
Vậy tử số viết được thành: 2012x1+2011x2+2010x3+...+2x2011+1x2012

Nên \(K=1\)

\(=>\)\(K+2011=2012\)

Vậy \(K+2011=2012\)
Chắc chắn đúng nhé!!

13 tháng 1 2017

mk quên ko nói giải rõ ra nha

7 tháng 5 2018

Bn tham khảo bài Lee Vincent nha!

16 tháng 8 2018

ta có \(\left(1-\frac{1}{2010}.\right).\left(1-\frac{2}{2010}\right)....\left(1-\frac{2010}{2010}\right).\left(1-\frac{2011}{2010}\right)\)\(\left(1-\frac{1}{2010}\right).\left(1-\frac{2}{2010}\right).......0.\left(1-\frac{2011}{2010}\right)=0\)

4 tháng 1 2016

A = (-1)(-1)2(-1)3...(-1)2011

A = (-1)2011.2012:2 

A = (-1)2023066

A=  1 

\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

vì \(\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\Rightarrow x+2004=0\Rightarrow x=-2004\)

vậy x=-2004

25 tháng 4 2018

Ta có : \(A=\frac{2010^{2011+1}}{2010^{2010+1}}=\frac{2010^{2012}}{2010^{2011}}\)

Lại có  \(B=\frac{2010^{2012+1}}{2010^{2011}}=\frac{2010^{2013}}{2010^{2011}}\)

Suy ra \(\frac{2010^{2012}}{2010^{2011}}< \frac{2010^{2013}}{2010^{2011}}\)

=> A < B

Chúc bạn thi tốt