K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

3385   >   3100

Vì số mũ lớn hơn

9 tháng 2 2022

Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à

9 tháng 2 2022

bucquabucquabucqua đùa nhau chắc

 

18 tháng 7 2019

\(5^{2019}< 5^{2020}\)

vì 

2020>2019

=>\(5^{2019}< 5^{2020}\)

29 tháng 4 2020

Vì dơi chi sau yếu nên khi hạ cánh dơi sẽ tren ngược người xuống và khi bay chỉ cần thả cành cây ra

chi sau của chim phát triển hơn dơi nên khi hạ cách chim sẽ dùng chi sau đứng còn khi bay chỉ cần vỗ cánh mà bay

học tốt

10 tháng 2 2016

920=(32)20=340

2713=(33)13=339

   vì 340>339 nên 920>2713

                Vậy 920>2713

10 tháng 2 2016

920>2713

T..i..c..k mk rùi mk giải đầy đủ cho

16 tháng 6 2021

A B C D O M I

a/ Xét tg ABD và tg CBD có đường cao từ D->AB = đường cao từ B->CD nên

\(\frac{S_{ABD}}{S_{CBD}}=\frac{AB}{CD}=\frac{2}{5}\)

b/

Gọi O là giao của AC và BD, nối M với O cắt AB tại I

Ta có \(\frac{S_{ABD}}{S_{CBD}}=\frac{2}{5}\) Hai tg này có chung cạnh BD nên

\(\frac{S_{ABD}}{S_{CBD}}=\) đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\)

Xét tg ABO và tg BCO có chung cạnh BO nên

\(\frac{S_{ABO}}{S_{BCO}}=\)đường cao từ A->BD / đường cao từ C->BD \(=\frac{2}{5}\) Hai tg này có chung đường cao từ B->AC nên

\(\frac{S_{ABO}}{S_{BCO}}=\frac{AO}{CO}=\frac{2}{5}\)

Xét tg AMO và tg CMO có chung đường cao từ M->AC nên

\(\frac{S_{AMO}}{S_{CMO}}=\frac{AO}{CO}=\frac{2}{5}\) Hai tg này có chung cạnh MO nên

\(\frac{S_{AMO}}{S_{CMO}}=\) đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\)

Xét tg AMI và tg CMI có chung cạnh MI nên

\(\frac{S_{AMI}}{S_{CMI}}=\)đường cao từ A->MO / đường cao từ C->MO \(=\frac{2}{5}\Rightarrow S_{AMI}=\frac{2xS_{CMI}}{5}\)

Chứng minh tương tự ta cũng có 

\(\frac{S_{BMI}}{S_{DMI}}=\frac{2}{5}\Rightarrow S_{BMI}=\frac{2xS_{DMI}}{5}\)

\(\Rightarrow S_{AMI}+S_{BMI}=\frac{2}{5}x\left(S_{CMI}+S_{DMI}\right)=\frac{2}{5}x\left(S_{BMI}+S_{BIC}+S_{AMI}+S_{AID}\right)\)

\(\Rightarrow\frac{3}{5}x\left(S_{AMI}+S_{BMI}\right)=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\)

\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AID}\right)\) (*)

Xét tg AID và tg AIC có chung cạnh AI và đường cao từ D->AB = đường cao từ C->AB nên \(S_{AID}=S_{AIC}\) Thay vào (*)

\(\Rightarrow\frac{3}{5}xS_{AMB}=\frac{2}{5}x\left(S_{BIC}+S_{AIC}\right)=\frac{2}{5}xS_{ABC}\Rightarrow\frac{S_{AMB}}{S_{ABC}}=\frac{2}{3}\)

Xét tg AMB và tg ABC có chung đường cao từ A->MC nên

\(\frac{S_{AMB}}{S_{ABC}}=\frac{MB}{BC}=\frac{2}{3}\)

13 tháng 9 2020

Ta có: \(2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}=8^{10}+27^{10}+64^{10}\)

\(3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(8^2\right)^{10}=9^{10}+36^{10}+64^{10}\)

Vì \(8< 9\)\(\Rightarrow8^{10}< 9^{10}\)

mà \(27< 36\)\(\Rightarrow27^{10}< 36^{10}\)

\(\Rightarrow8^{10}+27^{10}< 9^{10}+36^{10}\)

\(\Rightarrow8^{10}+27^{10}+64^{10}< 9^{10}+36^{10}+64^{10}\)

hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)

13 tháng 9 2020

so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20

3 tháng 7 2017

\(2^{150}< 3^{100}\)

nha bạn !!!!