K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

 

Giả sử \(ABC\text{D}\) là một hình vuông có cạnh là một đơn vị. Diện tích của hình vuông đó là:

1 x 1 = 1 ( đơn vị diện tích )

S1 S2 S3 S4 S5 S6 A B D C 1 đơn vị

Hình chữ nhật \(S_1\) bằng một nữa hình vuông \(ABC\text{D}\) nên diện tích: \(S_1\)\(=\frac{1}{2}\)

Chia đôi phần còn lại của hình vuông \(ABC\text{D}\) ta được hình vuông \(S_2\) bằng \(\frac{1}{4}\) hình vuông \(ABC\text{D}\) nên diện tích \(S_2\)\(=\frac{1}{4}\)

Tiếp tục chia đôi phần còn lại của hình vuông \(ABC\text{D}\) ta được hình chữ nhật \(S_3\) có diện tích \(S_3\)\(=\frac{1}{8}\)

Cứ tiếp tục làm như vậy ta có các diện tích:

\(S_4\)\(=\frac{1}{16}\)\(S_5\)\(=\frac{1}{32}\)\(S_6\)\(=\frac{1}{64}\), v.v.......

Vậy: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+......\)

\(=S_1\)\(+\)\(S_2\)\(+\)\(S_3\)\(+\)\(S_4\)\(+\)\(S_5\)\(+\)\(S_6\)\(+.......\)

Nhìn vào hình vẽ ta thấy nếu ta càng kéo dài tổng các diện tích nói trên bao nhiêu thì tổng ấy càng tiến dần đến diện tích hình vuông \(ABC\text{D}\) bấy nhiêu.

Vậy nếu ta kéo dài mãi mãi tổng các diện tích nói trên thì sẽ được chính diện tích hình vuông \(ABC\text{D}\). Suy ra:

\(S_1\)\(+\)\(S_2\)\(+\)\(S_3\)\(+\)\(S_4\)\(+.......=S_{ABC\text{D}}\)

Hay \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+.....=1\)(*)

25 tháng 9 2016

Help me!

15 tháng 4 2017

Cộng theo số tự nhiên nhé !

15 tháng 4 2017

Cậu thiếu đề rồi!

Phép cộng của tổng sau thì cậu phải ghi phép tính ra mình mới làm được chứ

18 tháng 2 2017

nếu cứ kéo dài thì tổng sẽ bằng 1

chuổn 100% luôn.k mik nhé.chúc bn học giỏi

26 tháng 5 2018

Kéo dài thế nào  hả bạn ?

26 tháng 5 2018

\(1+\frac{1}{3}+\frac{1}{9}=\frac{9}{9}+\frac{3}{9}+\frac{1}{9}=\frac{13}{9}\)

Nếu ta cứ kéo dài  mãi thì biểu thức này \(>\frac{13}{9}\)

27 tháng 7 2018

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....\) 

Đặt  \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\)

\(2A-A=1-\frac{1}{2^n}\)

Tổng là \(A=1-\frac{1}{2^n}\)

24 tháng 4 2016

= có trời nó biết!!!!!!!!!!!!

4 tháng 7 2019

#)Giải :

Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)

\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^n}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)

4 tháng 7 2019

S1 S2 S3 S4 A B C D

Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.

Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:

S1 = \(\frac{1}{3}\)

Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:

S2 = \(\frac{1}{9}\)

Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:

S3 = \(\frac{1}{27}\)

Tiếp tục làm như thế và cộng lại, ta có:

S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)

Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:

S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD

hoặc  \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1

7 tháng 11 2016

1) Tổng quát ta có A = \(\sum\limits^{k=1}_n\frac{1}{2^k}\) khi đó \(\lim\limits_{x\rightarrow+\infty}A=0\)

 

22 tháng 11 2016

1, tổng cấp số nhân lùi vô hạn \(A=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1\)