x,y>0.Tìm GTNN của P=(x2+12)/(x+y) + y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bn giải giùm mik bài này đc ko cảm ơn bn
Chứng minh rằng với mọi n >2 thì số n ^ 2 - n + 2 không phải là số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(x=\sqrt{10}sin^2a\); \(y=\sqrt{10}cos^2a\)
(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))
Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)
\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)
Đặt \(sin^2acos^2a=l\)
\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)
\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bất đẳng thức \(AM-GM\) đối với từng bộ số trong \(D\) ta có:
\(D=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\ge2\sqrt{3x.\frac{12}{x}}+2\sqrt{y.\frac{16}{y}}+2.6=32\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=6\\3x=\frac{12}{x}\\y=\frac{16}{y}\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy, GTNN của \(D\) là \(32\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=4\end{cases}}\)