K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{40}=\frac{9+31}{40}=1\)

suy ra:

\(\frac{x+1}{2}=1\Rightarrow x+1=2\Rightarrow x=1\)

\(\frac{y+3}{4}=1\Rightarrow y+3=4\Rightarrow y=1\)

\(\frac{z+5}{6}=1\Rightarrow z+5=6\Rightarrow z=1\)

Vậy x=y=z=1

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2\cdot9+4\cdot6}=\frac{13}{26}=\frac12\)

=>\(\begin{cases}x=20\cdot\frac12=10\\ y=9\cdot\frac12=\frac92\\ z=6\cdot\frac12=3\end{cases}\)

2: \(\frac{x}{3}=\frac{y}{4}\)

=>\(\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{7}\)

=>\(\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

mà 2x+3y-z=186

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2\cdot15+3\cdot20-28}=\frac{186}{62}=3\)

=>\(\begin{cases}x=3\cdot15=45\\ y=3\cdot20=60\\ z=3\cdot28=84\end{cases}\)

3: \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)

=>\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}\)

mà 3x+5y+7z=123

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}=\frac{3x+5y+7z}{3\cdot2+5\cdot2,5+7\cdot1,75}=\frac{123}{30,75}=4\)

=>\(\begin{cases}x=4\cdot2=8\\ y=4\cdot2,5=10\\ z=4\cdot1,75=7\end{cases}\)

4: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)

=>\(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}\)

Đặt \(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}=k\)

=>\(x=2k;y=\frac32k;z=\frac43k\)

xyz=-108

=>\(2k\cdot\frac32k\cdot\frac43k=-108\)

=>\(4k^3=-108\)

=>\(k^3=-27\)

=>k=-3

=>\(\begin{cases}x=2\cdot\left(-3\right)=-6\\ y=\frac32\cdot\left(-3\right)=-\frac92\\ z=\frac43\cdot\left(-3\right)=-4\end{cases}\)

8 tháng 10 2016

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)

Áp Dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{12}=\frac{24}{12}=2\)

=> \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)

=> \(\frac{y+2}{4}=2\Rightarrow y=6\)

=> \(\frac{z+3}{5}=2\Rightarrow z=7\)

8 tháng 10 2016

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+3y+4z}{4+12+24}=\frac{9}{40}\)

=>\(\frac{x+1}{2}=\frac{9}{40}\Rightarrow x=-0,55\)

=> \(\frac{y+3}{4}=\frac{9}{40}\Rightarrow y=-2,1\)

=>\(\frac{z+5}{6}=\frac{9}{40}\Rightarrow z=-3,65\)

11 tháng 10 2016

a) Đặt 2x - 1 / 5 = 3y + 2 / 4 = 4z - 3 / 5 = k

=> 2x = 5k + 1; 3y = 4k - 2; 4z = 5k + 3

=> 2x - 3y + 4z = 5k + 1 - 4k - 2 + 5k + 3 = 6k + 2 = 9

=> 6k = 9 - 2 = 7

=> k = 7 : 6 = 7/6

2x =5k

11 tháng 10 2016

Xĩn lỗi, mik ấn nhầm

6 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{x+5}{6}=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{40}=\frac{9+31}{40}=1\)

Suy ra : 

\(\frac{x+1}{2}=1\Rightarrow x+1=2\Rightarrow x=1\)

\(\frac{y+3}{4}=1\Rightarrow y+3=4\Rightarrow y=1\)

\(\frac{z+5}{6}=1\Rightarrow z+5=6\Rightarrow z=1\)

Vậy x = y = z = 1

6 tháng 9 2017

Ta có : \(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}\)

\(=\frac{39+1}{40}=\frac{40}{40}=1\)

Nên : x + 1/2 = 1 => x + 1 = 2 => x = 1

         y + 3/4 = 1 => y + 3 = 4 => y = 1

         z + 5/6 = 1 => z + 5 = 1 => z = 1

Vậy ......................

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

1. Áp dụng TCDTSBN ta có:

$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$

$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$

$\Rightarrow x-1=y-2=z+5=0$

$\Rightarrow x=1; y=2; z=-5$

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

2.

Có:

$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$

Suy ra:

$x+1=2.1=2\Rightarrow x=1$

$y+3=1.4=4\Rightarrow y=1$

$z+5=6.1=6\Rightarrow z=1$

 

$

20 tháng 7 2023

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

8 tháng 12 2024

a) x=949/27
    y=755/27
    z=61/9
    các bạn xem giúp mik đúng chx ạ, mik đặt là k

15 tháng 10 2019

a) Ta có: 3x  = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

           7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy ...

b) Tương tự câu trên

c) Ta có:  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)

Vậy ....

d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)

e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)

Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)

Nếu ko hiểu cứ hỏi t

22 tháng 11 2020

b,Sửa đề :  \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)

\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)

Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)

\(x=36,75;y=49;z=122,5\)

26 tháng 10 2021

x254n3jsm3,s3333