CMR: không tồn tại các số nguyên a, b, c sao cho a2 + b2 + c2 = 2007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta biến đổi : a2 ( b - c ) + b2 ( c - a ) + c2 ( a - b ) = 0 thành ( a - b ) ( b - c ) ( a - c ) = 0
Ta suy ra : a = b hoặc b = c hoặc c = a
Vậy 3 số a,b,c tồn tại 2 số bằng nhau
à quên, cách biến đổi như vậy bạn tham khảo ở đây : Câu hỏi của Tên của bạn - Toán lớp 8 - Học toán với OnlineMath
Lời giải:
Không mất tổng quát giả sử $a\leq b\leq c$
Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.
Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.
Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$
Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$
$\Rightarrow b^2\leq 2533$
$\Rightarrow b< 51$
$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$
Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.
vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn
+) cả 3 số a,b,c chẵn
=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )
khi đó: a2+b2+c2= 12(loại)
=> một trong 3 số a,b,c chẵn
vì giá trị các số bằng nhau, giả sử a chẵn => a=2
khi đó: a2+b2+c2= 4+b2+c2
=> b2+c2= 5066
vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9
=> b2 và c2 có tận cùng là 0, 1, 4, 5, 6, 9
Mà b và c lẻ
=> b2 và c2 có tận cùng là 1, 5, 9
mà 5066 có tận cùng là 6
=> b2 và c2 có tận cùng là 1, 5
=> b và c có tận cùng là 1, 5
giả sử b có tận cùng là 5=> b=5
khi đó: 25+ c2 = 5066
c2 = 5041=712
=> c = 71
vậy, a=2, b=5, c=71 và các hoán vị của nó
Ta có:
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)
Tương tự
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng
Nếu ko có 2 số nào đồng thời bằng 0:
\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)
\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)
\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)
áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\) \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)
\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)
\(+c\left(a^2b^2-a^2-b^2+1\right)\)
\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)
\(+ca^2b^2-a^2c-b^2c+c\)
\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)
\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)
\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)
Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)
Do tổng 3 số là một số lẻ nên 3 số gồm: 2 chẵn + 1 lẻ hoặc 3 lẻ
+TH1: 2 số chẵn và 1 số lẻ. Do vai trò của a, b, c là như nhau nên ta giả sử \(a=2x;\text{ }b=2y;\text{ }c=2z+1\) (a và b chẵn; c lẻ).
\(2007=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2=4x^2+4y^2+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+y^2+z^2+z\right)=2006\)
Vế trái chia hết cho 6 mà vế phải không chia hết cho 6 => không tồn tại các số nguyên x, y, z => không tồn tại các số nguyên a, b, c.
+TH2: 3 số đều lẻ.
Giả sử \(a=2x+1;b=2y+1;c=2z+1\)
\(2007=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)
\(\Rightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2004\)
\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=501\)
+Do x và x+1 là 2 số nguyên liên tiếp nên 1 trong 2 số là số chẵn => tích của chúng là số chẵn hay x(x+1) chẵn.
Tương tự y(y+1) và z(z+1) đều chẵn
=> Vế trái chẵn và vế phải = 501 là một số lẻ
=> không tồn tại x, y, z nguyên.
=> không tồn tại các số nguyên a, b, c thỏa mãn.
Vậy: không tồn tại các số nguyên a, b, c thỏa \(a^2+b^2+c^2=2007\)
Cảm ơn Mr Lazy nha, nhưng mình vừa biết làm xong, bạn giải giùm mình bài này nhé http://olm.vn/hoi-dap/question/128897.html